Computing Optimal Transport Maps and Wasserstein Barycenters Using Conditional Normalizing Flows
- URL: http://arxiv.org/abs/2505.22364v1
- Date: Wed, 28 May 2025 13:46:07 GMT
- Title: Computing Optimal Transport Maps and Wasserstein Barycenters Using Conditional Normalizing Flows
- Authors: Gabriele Visentin, Patrick Cheridito,
- Abstract summary: We present a novel method for efficiently computing optimal transport maps and Wasserstein barycenters in high-dimensional spaces.<n>Our approach uses conditional normalizing flows to approximate the input distributions as invertible pushforward transformations from a common latent space.<n>We show how this approach can be extended to compute Wasserstein barycenters by solving a conditional variance minimization problem.
- Score: 1.8109081066789847
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a novel method for efficiently computing optimal transport maps and Wasserstein barycenters in high-dimensional spaces. Our approach uses conditional normalizing flows to approximate the input distributions as invertible pushforward transformations from a common latent space. This makes it possible to directly solve the primal problem using gradient-based minimization of the transport cost, unlike previous methods that rely on dual formulations and complex adversarial optimization. We show how this approach can be extended to compute Wasserstein barycenters by solving a conditional variance minimization problem. A key advantage of our conditional architecture is that it enables the computation of barycenters for hundreds of input distributions, which was computationally infeasible with previous methods. Our numerical experiments illustrate that our approach yields accurate results across various high-dimensional tasks and compares favorably with previous state-of-the-art methods.
Related papers
- Quantization-based Bounds on the Wasserstein Metric [0.7550566004119158]
The Wasserstein metric has become increasingly important in many machine learning applications.<n>Despite its appeal, it is often too costly to compute.<n>We consider the challenge of computing efficient approximations to the Wasserstein metric that also serve as strict upper or lower bounds.
arXiv Detail & Related papers (2025-06-01T12:06:31Z) - Estimating Barycenters of Distributions with Neural Optimal Transport [93.28746685008093]
We propose a new scalable approach for solving the Wasserstein barycenter problem.
Our methodology is based on the recent Neural OT solver.
We also establish theoretical error bounds for our proposed approach.
arXiv Detail & Related papers (2024-02-06T09:17:07Z) - Flow-based Distributionally Robust Optimization [23.232731771848883]
We present a framework, called $textttFlowDRO$, for solving flow-based distributionally robust optimization (DRO) problems with Wasserstein uncertainty sets.
We aim to find continuous worst-case distribution (also called the Least Favorable Distribution, LFD) and sample from it.
We demonstrate its usage in adversarial learning, distributionally robust hypothesis testing, and a new mechanism for data-driven distribution perturbation differential privacy.
arXiv Detail & Related papers (2023-10-30T03:53:31Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Variational Wasserstein Barycenters with c-Cyclical Monotonicity [17.26436842450489]
We develop a novel continuous approximation method for the Wasserstein barycenters problem given sample access to the input distributions.
We provide theoretical analysis on convergence and demonstrate the practical effectiveness of our method on real applications of posterior aggregation and synthetic data.
arXiv Detail & Related papers (2021-10-22T11:06:50Z) - Continuous Wasserstein-2 Barycenter Estimation without Minimax
Optimization [94.18714844247766]
Wasserstein barycenters provide a geometric notion of the weighted average of probability measures based on optimal transport.
We present a scalable algorithm to compute Wasserstein-2 barycenters given sample access to the input measures.
arXiv Detail & Related papers (2021-02-02T21:01:13Z) - Continuous Regularized Wasserstein Barycenters [51.620781112674024]
We introduce a new dual formulation for the regularized Wasserstein barycenter problem.
We establish strong duality and use the corresponding primal-dual relationship to parametrize the barycenter implicitly using the dual potentials of regularized transport problems.
arXiv Detail & Related papers (2020-08-28T08:28:06Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
We propose a new randomized algorithm for solving L2-regularized least-squares problems based on sketching.
We consider two of the most popular random embeddings, namely, Gaussian embeddings and the Subsampled Randomized Hadamard Transform (SRHT)
arXiv Detail & Related papers (2020-06-10T15:00:09Z) - Stochastic Optimization for Regularized Wasserstein Estimators [10.194798773447879]
We introduce an algorithm to solve a regularized version of the problem of Wasserstein estimators gradient, with a time per step which is sublinear in the natural dimensions.
We show that this algorithm can be extended to other tasks, including estimation of Wasserstein barycenters.
arXiv Detail & Related papers (2020-02-20T12:04:05Z) - Distributed Averaging Methods for Randomized Second Order Optimization [54.51566432934556]
We consider distributed optimization problems where forming the Hessian is computationally challenging and communication is a bottleneck.
We develop unbiased parameter averaging methods for randomized second order optimization that employ sampling and sketching of the Hessian.
We also extend the framework of second order averaging methods to introduce an unbiased distributed optimization framework for heterogeneous computing systems.
arXiv Detail & Related papers (2020-02-16T09:01:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.