Zooming from Context to Cue: Hierarchical Preference Optimization for Multi-Image MLLMs
- URL: http://arxiv.org/abs/2505.22396v1
- Date: Wed, 28 May 2025 14:24:02 GMT
- Title: Zooming from Context to Cue: Hierarchical Preference Optimization for Multi-Image MLLMs
- Authors: Xudong Li, Mengdan Zhang, Peixian Chen, Xiawu Zheng, Yan Zhang, Jingyuan Zheng, Yunhang Shen, Ke Li, Chaoyou Fu, Xing Sun, Rongrong Ji,
- Abstract summary: We propose Context-to-Cue Direct Preference Optimization (CcDPO), a multi-level preference optimization framework.<n>CcDPO enhances per-image perception in multi-image settings by zooming into visual clues -- from sequential context to local details.<n> Experiments show that CcDPO significantly reduces hallucinations and yields consistent performance gains.
- Score: 74.74767980885758
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-modal Large Language Models (MLLMs) excel at single-image tasks but struggle with multi-image understanding due to cross-modal misalignment, leading to hallucinations (context omission, conflation, and misinterpretation). Existing methods using Direct Preference Optimization (DPO) constrain optimization to a solitary image reference within the input sequence, neglecting holistic context modeling. We propose Context-to-Cue Direct Preference Optimization (CcDPO), a multi-level preference optimization framework that enhances per-image perception in multi-image settings by zooming into visual clues -- from sequential context to local details. It features: (i) Context-Level Optimization : Re-evaluates cognitive biases underlying MLLMs' multi-image context comprehension and integrates a spectrum of low-cost global sequence preferences for bias mitigation. (ii) Needle-Level Optimization : Directs attention to fine-grained visual details through region-targeted visual prompts and multimodal preference supervision. To support scalable optimization, we also construct MultiScope-42k, an automatically generated dataset with high-quality multi-level preference pairs. Experiments show that CcDPO significantly reduces hallucinations and yields consistent performance gains across general single- and multi-image tasks.
Related papers
- Object-centric Self-improving Preference Optimization for Text-to-Image Generation [10.87176643368746]
We propose an Object-centric Self-improving Preference Optimization framework for text-to-image generation by MLLMs.<n> OSPO emphasizes the importance of high-quality preference pair data, which is critical for effective preference optimization.<n>We validate OSPO on three representative compositional text-to-image benchmarks, demonstrating substantial performance gains over baseline models.
arXiv Detail & Related papers (2025-05-28T03:45:42Z) - Re-Align: Aligning Vision Language Models via Retrieval-Augmented Direct Preference Optimization [18.855378039713678]
Large Vision Language Models (VLMs) are prone to significant hallucinations, particularly in the form of cross-modal inconsistencies.<n>We introduce Re-Align, a novel alignment framework that leverages image retrieval to construct a dual-preference dataset.<n>We also introduce rDPO, an extension of the standard direct preference optimization that incorporates an additional visual preference objective during fine-tuning.
arXiv Detail & Related papers (2025-02-18T18:59:57Z) - CHiP: Cross-modal Hierarchical Direct Preference Optimization for Multimodal LLMs [107.21334626890713]
Multimodal Large Language Models (MLLMs) still struggle with hallucinations despite their impressive capabilities.<n>We propose a Cross-modal Hierarchical Direct Preference Optimization (CHiP) to address these limitations.<n>We evaluate CHiP through both quantitative and qualitative analyses, with results across multiple benchmarks demonstrating its effectiveness in reducing hallucinations.
arXiv Detail & Related papers (2025-01-28T02:05:38Z) - MIA-DPO: Multi-Image Augmented Direct Preference Optimization For Large Vision-Language Models [85.30735602813093]
Multi-Image Augmented Direct Preference Optimization (MIA-DPO) is a visual preference alignment approach that effectively handles multi-image inputs.
MIA-DPO mitigates the scarcity of diverse multi-image training data by extending single-image data with unrelated images arranged in grid collages or pic-in-pic formats.
arXiv Detail & Related papers (2024-10-23T07:56:48Z) - M$^2$PT: Multimodal Prompt Tuning for Zero-shot Instruction Learning [90.75075886543404]
Multimodal Large Language Models (MLLMs) demonstrate remarkable performance across a wide range of domains.
In this work, we introduce a novel Multimodal Prompt Tuning (M$2$PT) approach for efficient instruction tuning of MLLMs.
arXiv Detail & Related papers (2024-09-24T01:40:24Z) - mDPO: Conditional Preference Optimization for Multimodal Large Language Models [52.607764280030196]
Direct preference optimization (DPO) has shown to be an effective method for large language model (LLM) alignment.
Recent works have attempted to apply DPO to multimodal scenarios but have found it challenging to achieve consistent improvement.
We propose mDPO, a multimodal DPO objective that prevents the over-prioritization of language-only preferences by also optimizing image preference.
arXiv Detail & Related papers (2024-06-17T17:59:58Z) - Position-Enhanced Visual Instruction Tuning for Multimodal Large
Language Models [50.07056960586183]
We propose Position-enhanced Visual Instruction Tuning (PVIT) to extend the functionality of Multimodal Large Language Models (MLLMs)
This integration promotes a more detailed comprehension of images for the MLLM.
We present both quantitative experiments and qualitative analysis that demonstrate the superiority of the proposed model.
arXiv Detail & Related papers (2023-08-25T15:33:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.