M$^2$PT: Multimodal Prompt Tuning for Zero-shot Instruction Learning
- URL: http://arxiv.org/abs/2409.15657v4
- Date: Wed, 30 Oct 2024 04:38:52 GMT
- Title: M$^2$PT: Multimodal Prompt Tuning for Zero-shot Instruction Learning
- Authors: Taowen Wang, Yiyang Liu, James Chenhao Liang, junhan zhao, Yiming Cui, Yuning Mao, Shaoliang Nie, Jiahao Liu, Fuli Feng, Zenglin Xu, Cheng Han, Lifu Huang, Qifan Wang, Dongfang Liu,
- Abstract summary: Multimodal Large Language Models (MLLMs) demonstrate remarkable performance across a wide range of domains.
In this work, we introduce a novel Multimodal Prompt Tuning (M$2$PT) approach for efficient instruction tuning of MLLMs.
- Score: 90.75075886543404
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal Large Language Models (MLLMs) demonstrate remarkable performance across a wide range of domains, with increasing emphasis on enhancing their zero-shot generalization capabilities for unseen tasks across various modalities. Instruction tuning has emerged as an effective strategy for achieving zero-shot generalization by finetuning pretrained models on diverse multimodal tasks. As the scale of MLLMs continues to grow, parameter-efficient finetuning becomes increasingly critical. However, most existing parameter-efficient approaches focus only on single modalities and often overlook the multimodal characteristics during finetuning. In this work, we introduce a novel Multimodal Prompt Tuning (M$^2$PT) approach for efficient instruction tuning of MLLMs. M$^2$PT effectively integrates visual and textual prompts into the vision encoder and language processor respectively during finetuning, facilitating the extraction and alignment of features across modalities. Empirical results on various multimodal evaluation datasets demonstrate the superior performance of our approach compared to several state-of-the-art baselines. A comprehensive set of ablation studies validates the effectiveness of our prompt design and the efficiency of our approach.
Related papers
- Enhancing the Reasoning Ability of Multimodal Large Language Models via Mixed Preference Optimization [65.64108848398696]
We introduce a preference optimization process to enhance the multimodal reasoning capabilities of MLLMs.
We develop a simple yet effective method, termed Mixed Preference Optimization (MPO), which boosts multimodal CoT performance.
Our model, InternVL2-8B-MPO, achieves an accuracy of 67.0 on MathVista, outperforming InternVL2-8B by 8.7 points and achieving performance comparable to the 10x larger InternVL2-76B.
arXiv Detail & Related papers (2024-11-15T18:59:27Z) - CROME: Cross-Modal Adapters for Efficient Multimodal LLM [28.337072921099494]
Multimodal Large Language Models (MLLMs) demonstrate remarkable image-language capabilities.
Existing approaches often necessitate expensive language model retraining and limited adaptability.
We propose CROME, an efficient vision-language instruction tuning framework.
arXiv Detail & Related papers (2024-08-13T03:45:11Z) - Intuition-aware Mixture-of-Rank-1-Experts for Parameter Efficient Finetuning [50.73666458313015]
Large Language Models (LLMs) have demonstrated significant potential in performing multiple tasks in multimedia applications.
MoE has been emerged as a promising solution with its sparse architecture for effective task decoupling.
Intuition-MoR1E achieves superior efficiency and 2.15% overall accuracy improvement across 14 public datasets.
arXiv Detail & Related papers (2024-04-13T12:14:58Z) - Multimodal Instruction Tuning with Conditional Mixture of LoRA [54.65520214291653]
This paper introduces a novel approach that integrates multimodal instruction tuning with Low-Rank Adaption (LoRA)
It innovates upon LoRA by dynamically constructing low-rank adaptation matrices tailored to the unique demands of each input instance.
Experimental results on various multimodal evaluation datasets indicate that MixLoRA not only outperforms the conventional LoRA with the same or even higher ranks.
arXiv Detail & Related papers (2024-02-24T20:15:31Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique.
Our experiments reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness.
arXiv Detail & Related papers (2023-12-16T17:13:08Z) - MMICT: Boosting Multi-Modal Fine-Tuning with In-Context Examples [63.78384552789171]
This paper introduces Multi-Modal In-Context Tuning (MMICT), a novel multi-modal fine-tuning paradigm.
We propose the Multi-Modal Hub (M-Hub), a unified module that captures various multi-modal features according to different inputs and objectives.
Based on M-Hub, MMICT enables MM-LLMs to learn from in-context visual-guided textual features and subsequently generate outputs conditioned on the textual-guided visual features.
arXiv Detail & Related papers (2023-12-11T13:11:04Z) - On the Performance of Multimodal Language Models [4.677125897916577]
This study conducts a comparative analysis of different multimodal instruction tuning approaches.
We reveal key insights for guiding architectural choices when incorporating multimodal capabilities into large language models.
arXiv Detail & Related papers (2023-10-04T23:33:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.