Quantum Search on Computation Trees
- URL: http://arxiv.org/abs/2505.22405v1
- Date: Wed, 28 May 2025 14:35:18 GMT
- Title: Quantum Search on Computation Trees
- Authors: Jevgēnijs Vihrovs,
- Abstract summary: We show a generalization of the quantum walk algorithm for search in backtracking trees by Montanaro (ToC)<n>This framework provides an easy and convenient way to re-obtain a number of other quantum frameworks like variable time search, quantum divide & conquer and bomb query algorithms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show a simple generalization of the quantum walk algorithm for search in backtracking trees by Montanaro (ToC 2018) to the case where vertices can have different times of computation. If a vertex $v$ in the tree of depth $D$ is computed in $t_v$ steps from its parent, then we show that detection of a marked vertex requires $\text{O}(\sqrt{TD})$ queries to the steps of the computing procedures, where $T = \sum_v t_v^2$. This framework provides an easy and convenient way to re-obtain a number of other quantum frameworks like variable time search, quantum divide & conquer and bomb query algorithms. The underlying algorithm is simple, explicitly constructed, and has low poly-logarithmic factors in the complexity. As a corollary, this gives a quantum algorithm for variable time search with unknown times with optimal query complexity $\text{O}(\sqrt{T \log \min(n,t_{\max})})$, where $T = \sum_i t_i^2$ and $t_{\max} = \max_i t_i$ if $t_i$ is the number of steps required to compute the $i$-th variable. This resolves the open question of the query complexity of variable time search, as the matching lower bound was recently shown by Ambainis, Kokainis and Vihrovs (TQC'23). As another result, we obtain an $\widetilde{\text{O}}(n)$ time algorithm for the geometric task of determining if any three lines among $n$ given intersect at the same point, improving the $\text{O}(n^{1+\text{o}(1)})$ algorithm of Ambainis and Larka (TQC'20).
Related papers
- Measuring quantum relative entropy with finite-size effect [53.64687146666141]
We study the estimation of relative entropy $D(rho|sigma)$ when $sigma$ is known.<n>Our estimator attains the Cram'er-Rao type bound when the dimension $d$ is fixed.
arXiv Detail & Related papers (2024-06-25T06:07:20Z) - A Scalable Algorithm for Individually Fair K-means Clustering [77.93955971520549]
We present a scalable algorithm for the individually fair ($p$, $k$)-clustering problem introduced by Jung et al. and Mahabadi et al.
A clustering is then called individually fair if it has centers within distance $delta(x)$ of $x$ for each $xin P$.
We show empirically that not only is our algorithm much faster than prior work, but it also produces lower-cost solutions.
arXiv Detail & Related papers (2024-02-09T19:01:48Z) - The Computational Complexity of Finding Stationary Points in Non-Convex Optimization [53.86485757442486]
Finding approximate stationary points, i.e., points where the gradient is approximately zero, of non-order but smooth objective functions is a computational problem.
We show that finding approximate KKT points in constrained optimization is reducible to finding approximate stationary points in unconstrained optimization but the converse is impossible.
arXiv Detail & Related papers (2023-10-13T14:52:46Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - On the exact quantum query complexity of $\ ext{MOD}_m^n$ and $\ ext{EXACT}_{k,l}^n$ [4.956977275061968]
We present an exact quantum algorithm for computing $textMOD_mn$.
We show exact quantum query complexity of a broad class of symmetric functions that map $0,1n$ to a finite set $X$ is less than $n$.
arXiv Detail & Related papers (2023-03-20T08:17:32Z) - Mind the gap: Achieving a super-Grover quantum speedup by jumping to the
end [114.3957763744719]
We present a quantum algorithm that has rigorous runtime guarantees for several families of binary optimization problems.
We show that the algorithm finds the optimal solution in time $O*(2(0.5-c)n)$ for an $n$-independent constant $c$.
We also show that for a large fraction of random instances from the $k$-spin model and for any fully satisfiable or slightly frustrated $k$-CSP formula, statement (a) is the case.
arXiv Detail & Related papers (2022-12-03T02:45:23Z) - Time and Query Complexity Tradeoffs for the Dihedral Coset Problem [0.19731444261635428]
Dihedral Coset Problem (DCP) in $Z_N$ has been extensively studied in quantum computing and post-quantum cryptography.
Ettinger-Hoyer algorithm is known to solve the DCP in $O(log(N))$ queries.
We introduce the first algorithm to improve in the linear queries regime over the Ettinger-Hoyer algorithm.
arXiv Detail & Related papers (2022-06-29T05:30:54Z) - Logarithmic Regret from Sublinear Hints [76.87432703516942]
We show that an algorithm can obtain $O(log T)$ regret with just $O(sqrtT)$ hints under a natural query model.
We also show that $o(sqrtT)$ hints cannot guarantee better than $Omega(sqrtT)$ regret.
arXiv Detail & Related papers (2021-11-09T16:50:18Z) - Online Sub-Sampling for Reinforcement Learning with General Function
Approximation [111.01990889581243]
In this paper, we establish an efficient online sub-sampling framework that measures the information gain of data points collected by an RL algorithm.
For a value-based method with complexity-bounded function class, we show that the policy only needs to be updated for $proptooperatornamepolylog(K)$ times.
In contrast to existing approaches that update the policy for at least $Omega(K)$ times, our approach drastically reduces the number of optimization calls in solving for a policy.
arXiv Detail & Related papers (2021-06-14T07:36:25Z) - Time and Query Optimal Quantum Algorithms Based on Decision Trees [2.492300648514128]
We show that a quantum algorithm can be implemented in time $tilde O(sqrtGT)$.
Our algorithm is based on non-binary span programs and their efficient implementation.
arXiv Detail & Related papers (2021-05-18T06:51:11Z) - Quantum speedups for dynamic programming on $n$-dimensional lattice
graphs [0.11470070927586015]
We show a quantum algorithm with complexity $widetilde O(T_Dn)$, where $T_D D+1$.
While the best known classical algorithm is $textpoly(m,n)log n T_Dn$, the time complexity of our quantum algorithm is $textpoly(m,n)log n T_Dn$.
arXiv Detail & Related papers (2021-04-29T14:50:03Z) - Leveraging Unknown Structure in Quantum Query Algorithms [0.0]
We show a modified span program algorithm to show these speed-ups persist even without having a promise ahead of time.
Our algorithm uses $tildeO(sqrtkn)$ queries to solve this problem if there is a path with at most $k$ edges.
arXiv Detail & Related papers (2020-12-02T15:32:52Z) - Fast Classical and Quantum Algorithms for Online $k$-server Problem on
Trees [0.19573380763700712]
We consider online algorithms for the $k$-server problem on trees.
Chrobak and Larmore proposed a $k$-competitive algorithm for this problem that has the optimal competitive ratio.
We propose a new time-efficient implementation of this algorithm that has $O(nlog n)$ time complexity for preprocessing.
arXiv Detail & Related papers (2020-08-01T14:21:45Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.