RC-AutoCalib: An End-to-End Radar-Camera Automatic Calibration Network
- URL: http://arxiv.org/abs/2505.22427v1
- Date: Wed, 28 May 2025 14:52:31 GMT
- Title: RC-AutoCalib: An End-to-End Radar-Camera Automatic Calibration Network
- Authors: Van-Tin Luu, Yon-Lin Cai, Vu-Hoang Tran, Wei-Chen Chiu, Yi-Ting Chen, Ching-Chun Huang,
- Abstract summary: This paper presents the first online automatic geometric calibration method for radar and camera systems.<n>Given the significant data sparsity and measurement uncertainty in radar height data, achieving automatic calibration during system operation has long been a challenge.<n>We propose a Dual-Perspective representation that gathers features from both frontal and bird's-eye views.
- Score: 24.911315964993584
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a groundbreaking approach - the first online automatic geometric calibration method for radar and camera systems. Given the significant data sparsity and measurement uncertainty in radar height data, achieving automatic calibration during system operation has long been a challenge. To address the sparsity issue, we propose a Dual-Perspective representation that gathers features from both frontal and bird's-eye views. The frontal view contains rich but sensitive height information, whereas the bird's-eye view provides robust features against height uncertainty. We thereby propose a novel Selective Fusion Mechanism to identify and fuse reliable features from both perspectives, reducing the effect of height uncertainty. Moreover, for each view, we incorporate a Multi-Modal Cross-Attention Mechanism to explicitly find location correspondences through cross-modal matching. During the training phase, we also design a Noise-Resistant Matcher to provide better supervision and enhance the robustness of the matching mechanism against sparsity and height uncertainty. Our experimental results, tested on the nuScenes dataset, demonstrate that our method significantly outperforms previous radar-camera auto-calibration methods, as well as existing state-of-the-art LiDAR-camera calibration techniques, establishing a new benchmark for future research. The code is available at https://github.com/nycu-acm/RC-AutoCalib.
Related papers
- Revisiting Radar Camera Alignment by Contrastive Learning for 3D Object Detection [31.69508809666884]
3D object detection algorithms based on radar and camera fusion have shown excellent performance.<n>We propose a new alignment model called Radar Camera Alignment (RCAlign)<n>Specifically, we design a Dual-Route Alignment (DRA) module based on contrastive learning to align and fuse the features between radar and camera.<n>Considering the sparsity of radar BEV features, a Radar Feature Enhancement (RFE) module is proposed to improve the densification of radar BEV features.
arXiv Detail & Related papers (2025-04-23T02:41:43Z) - TacoDepth: Towards Efficient Radar-Camera Depth Estimation with One-stage Fusion [54.46664104437454]
We propose TacoDepth, an efficient and accurate Radar-Camera depth estimation model with one-stage fusion.<n>Specifically, the graph-based Radar structure extractor and the pyramid-based Radar fusion module are designed.<n>Compared with the previous state-of-the-art approach, TacoDepth improves depth accuracy and processing speed by 12.8% and 91.8%.
arXiv Detail & Related papers (2025-04-16T05:25:04Z) - CalibRefine: Deep Learning-Based Online Automatic Targetless LiDAR-Camera Calibration with Iterative and Attention-Driven Post-Refinement [5.069968819561576]
CalibRefine is a fully automatic, targetless, and online calibration framework.<n>It directly processes raw LiDAR point clouds and camera images.<n>Our results show that robust object-level feature matching, combined with iterative refinement and self-supervised attention-based refinement, enables reliable sensor alignment.
arXiv Detail & Related papers (2025-02-24T20:53:42Z) - RobuRCDet: Enhancing Robustness of Radar-Camera Fusion in Bird's Eye View for 3D Object Detection [68.99784784185019]
Poor lighting or adverse weather conditions degrade camera performance.<n>Radar suffers from noise and positional ambiguity.<n>We propose RobuRCDet, a robust object detection model in BEV.
arXiv Detail & Related papers (2025-02-18T17:17:38Z) - Multi-Task Cross-Modality Attention-Fusion for 2D Object Detection [6.388430091498446]
We propose two new radar preprocessing techniques to better align radar and camera data.
We also introduce a Multi-Task Cross-Modality Attention-Fusion Network (MCAF-Net) for object detection.
Our approach outperforms current state-of-the-art radar-camera fusion-based object detectors in the nuScenes dataset.
arXiv Detail & Related papers (2023-07-17T09:26:13Z) - ROFusion: Efficient Object Detection using Hybrid Point-wise
Radar-Optical Fusion [14.419658061805507]
We propose a hybrid point-wise Radar-Optical fusion approach for object detection in autonomous driving scenarios.
The framework benefits from dense contextual information from both the range-doppler spectrum and images which are integrated to learn a multi-modal feature representation.
arXiv Detail & Related papers (2023-07-17T04:25:46Z) - Bridging the View Disparity of Radar and Camera Features for Multi-modal
Fusion 3D Object Detection [6.959556180268547]
This paper focuses on how to utilize millimeter-wave (MMW) radar and camera sensor fusion for 3D object detection.
A novel method which realizes the feature-level fusion under bird-eye view (BEV) for a better feature representation is proposed.
arXiv Detail & Related papers (2022-08-25T13:21:37Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
Two critical sensors for 3D perception in autonomous driving are the camera and the LiDAR.
fusing these two modalities can significantly boost the performance of 3D perception models.
We benchmark the state-of-the-art fusion methods for the first time.
arXiv Detail & Related papers (2022-05-30T09:35:37Z) - FOVEA: Foveated Image Magnification for Autonomous Navigation [53.69803081925454]
We propose an attentional approach that elastically magnifies certain regions while maintaining a small input canvas.
Our proposed method boosts the detection AP over standard Faster R-CNN, with and without finetuning.
On the autonomous driving datasets Argoverse-HD and BDD100K, we show our proposed method boosts the detection AP over standard Faster R-CNN, with and without finetuning.
arXiv Detail & Related papers (2021-08-27T03:07:55Z) - Radar Camera Fusion via Representation Learning in Autonomous Driving [4.278336455989584]
Key to successful radar-camera fusion is accurate data association.
Traditional rule-based association methods are susceptible to performance degradation in challenging scenarios and failure in corner cases.
We propose to address rad-cam association via deep representation learning, to explore feature-level interaction and global reasoning.
arXiv Detail & Related papers (2021-03-14T01:32:03Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
We propose a method for effective and efficient multispectral fusion of the two modalities in an adapted single-stage anchor-free base architecture.
We aim at learning pedestrian representations based on object center and scale rather than direct bounding box predictions.
Results show our method's effectiveness in detecting small-scaled pedestrians.
arXiv Detail & Related papers (2020-08-19T13:13:01Z) - Road Curb Detection and Localization with Monocular Forward-view Vehicle
Camera [74.45649274085447]
We propose a robust method for estimating road curb 3D parameters using a calibrated monocular camera equipped with a fisheye lens.
Our approach is able to estimate the vehicle to curb distance in real time with mean accuracy of more than 90%.
arXiv Detail & Related papers (2020-02-28T00:24:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.