Demystifying the Paradox of Importance Sampling with an Estimated History-Dependent Behavior Policy in Off-Policy Evaluation
- URL: http://arxiv.org/abs/2505.22492v1
- Date: Wed, 28 May 2025 15:42:20 GMT
- Title: Demystifying the Paradox of Importance Sampling with an Estimated History-Dependent Behavior Policy in Off-Policy Evaluation
- Authors: Hongyi Zhou, Josiah P. Hanna, Jin Zhu, Ying Yang, Chengchun Shi,
- Abstract summary: We show that estimating a history-dependent behavior policy can lead to lower mean squared error even when the true behavior policy is Markovian.<n>As the estimated behavior policy conditions on a longer history, we show a consistent decrease in variance.<n>We extend these findings to a range of other OPE estimators, including the sequential IS estimator, the doubly robust estimator and the marginalized IS estimator.
- Score: 13.230909541257724
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper studies off-policy evaluation (OPE) in reinforcement learning with a focus on behavior policy estimation for importance sampling. Prior work has shown empirically that estimating a history-dependent behavior policy can lead to lower mean squared error (MSE) even when the true behavior policy is Markovian. However, the question of why the use of history should lower MSE remains open. In this paper, we theoretically demystify this paradox by deriving a bias-variance decomposition of the MSE of ordinary importance sampling (IS) estimators, demonstrating that history-dependent behavior policy estimation decreases their asymptotic variances while increasing their finite-sample biases. Additionally, as the estimated behavior policy conditions on a longer history, we show a consistent decrease in variance. We extend these findings to a range of other OPE estimators, including the sequential IS estimator, the doubly robust estimator and the marginalized IS estimator, with the behavior policy estimated either parametrically or non-parametrically.
Related papers
- Policy Gradient with Active Importance Sampling [55.112959067035916]
Policy gradient (PG) methods significantly benefit from IS, enabling the effective reuse of previously collected samples.
However, IS is employed in RL as a passive tool for re-weighting historical samples.
We look for the best behavioral policy from which to collect samples to reduce the policy gradient variance.
arXiv Detail & Related papers (2024-05-09T09:08:09Z) - Doubly-Robust Off-Policy Evaluation with Estimated Logging Policy [11.16777821381608]
We introduce a novel doubly-robust (DR) off-policy estimator for Markov decision processes, DRUnknown, designed for situations where both the logging policy and the value function are unknown.
The proposed estimator initially estimates the logging policy and then estimates the value function model by minimizing the variance of the estimator while considering the estimating effect of the logging policy.
arXiv Detail & Related papers (2024-04-02T10:42:44Z) - Efficient and Sharp Off-Policy Evaluation in Robust Markov Decision Processes [44.974100402600165]
We study the evaluation of a policy best-parametric and worst-case perturbations to a decision process (MDP)
We use transition observations from the original MDP, whether they are generated under the same or a different policy.
Our estimator is also estimated statistical inference using Wald confidence intervals.
arXiv Detail & Related papers (2024-03-29T18:11:49Z) - Off-Policy Evaluation for Large Action Spaces via Policy Convolution [60.6953713877886]
Policy Convolution family of estimators uses latent structure within actions to strategically convolve the logging and target policies.
Experiments on synthetic and benchmark datasets demonstrate remarkable mean squared error (MSE) improvements when using PC.
arXiv Detail & Related papers (2023-10-24T01:00:01Z) - Low Variance Off-policy Evaluation with State-based Importance Sampling [21.727827944373793]
This paper proposes state-based importance sampling estimators which reduce the variance by dropping certain states from the computation of the importance weight.
Experiments in four domains show that state-based methods consistently yield reduced variance and improved accuracy compared to their traditional counterparts.
arXiv Detail & Related papers (2022-12-07T19:56:11Z) - Model-Free and Model-Based Policy Evaluation when Causality is Uncertain [7.858296711223292]
In off-policy evaluation, there may exist unobserved variables that both impact the dynamics and are used by the unknown behavior policy.
We develop worst-case bounds to assess sensitivity to these unobserved confounders in finite horizons.
We show that a model-based approach with robust MDPs gives sharper lower bounds by exploiting domain knowledge about the dynamics.
arXiv Detail & Related papers (2022-04-02T23:40:15Z) - Proximal Reinforcement Learning: Efficient Off-Policy Evaluation in
Partially Observed Markov Decision Processes [65.91730154730905]
In applications of offline reinforcement learning to observational data, such as in healthcare or education, a general concern is that observed actions might be affected by unobserved factors.
Here we tackle this by considering off-policy evaluation in a partially observed Markov decision process (POMDP)
We extend the framework of proximal causal inference to our POMDP setting, providing a variety of settings where identification is made possible.
arXiv Detail & Related papers (2021-10-28T17:46:14Z) - Variance-Aware Off-Policy Evaluation with Linear Function Approximation [85.75516599931632]
We study the off-policy evaluation problem in reinforcement learning with linear function approximation.
We propose an algorithm, VA-OPE, which uses the estimated variance of the value function to reweight the Bellman residual in Fitted Q-Iteration.
arXiv Detail & Related papers (2021-06-22T17:58:46Z) - Off-Policy Evaluation via Adaptive Weighting with Data from Contextual
Bandits [5.144809478361604]
We improve the doubly robust (DR) estimator by adaptively weighting observations to control its variance.
We provide empirical evidence for our estimator's improved accuracy and inferential properties relative to existing alternatives.
arXiv Detail & Related papers (2021-06-03T17:54:44Z) - Doubly Robust Off-Policy Value and Gradient Estimation for Deterministic
Policies [80.42316902296832]
We study the estimation of policy value and gradient of a deterministic policy from off-policy data when actions are continuous.
In this setting, standard importance sampling and doubly robust estimators for policy value and gradient fail because the density ratio does not exist.
We propose several new doubly robust estimators based on different kernelization approaches.
arXiv Detail & Related papers (2020-06-06T15:52:05Z) - Minimax-Optimal Off-Policy Evaluation with Linear Function Approximation [49.502277468627035]
This paper studies the statistical theory of batch data reinforcement learning with function approximation.
Consider the off-policy evaluation problem, which is to estimate the cumulative value of a new target policy from logged history.
arXiv Detail & Related papers (2020-02-21T19:20:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.