From Strangers to Assistants: Fast Desire Alignment for Embodied Agent-User Adaptation
- URL: http://arxiv.org/abs/2505.22503v1
- Date: Wed, 28 May 2025 15:51:13 GMT
- Title: From Strangers to Assistants: Fast Desire Alignment for Embodied Agent-User Adaptation
- Authors: Yuanfei Wang, Xinju Huang, Fangwei Zhong, Yaodong Yang, Yizhou Wang, Yuanpei Chen, Hao Dong,
- Abstract summary: We develop a home assistance simulation environment HA-Desire that integrates an LLM-driven human user agent.<n>We present a novel framework FAMER for fast desire alignment, which introduces a desire-based mental reasoning mechanism.<n>Our framework significantly enhances both task execution and communication efficiency, enabling embodied agents to quickly adapt to user-specific desires.
- Score: 24.232670566927972
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While embodied agents have made significant progress in performing complex physical tasks, real-world applications demand more than pure task execution. The agents must collaborate with unfamiliar agents and human users, whose goals are often vague and implicit. In such settings, interpreting ambiguous instructions and uncovering underlying desires is essential for effective assistance. Therefore, fast and accurate desire alignment becomes a critical capability for embodied agents. In this work, we first develop a home assistance simulation environment HA-Desire that integrates an LLM-driven human user agent exhibiting realistic value-driven goal selection and communication. The ego agent must interact with this proxy user to infer and adapt to the user's latent desires. To achieve this, we present a novel framework FAMER for fast desire alignment, which introduces a desire-based mental reasoning mechanism to identify user intent and filter desire-irrelevant actions. We further design a reflection-based communication module that reduces redundant inquiries, and incorporate goal-relevant information extraction with memory persistence to improve information reuse and reduce unnecessary exploration. Extensive experiments demonstrate that our framework significantly enhances both task execution and communication efficiency, enabling embodied agents to quickly adapt to user-specific desires in complex embodied environments.
Related papers
- Thought-Augmented Planning for LLM-Powered Interactive Recommender Agent [56.61028117645315]
We propose a novel thought-augmented interactive recommender agent system (TAIRA) that addresses complex user intents through distilled thought patterns.<n>Specifically, TAIRA is designed as an LLM-powered multi-agent system featuring a manager agent that orchestrates recommendation tasks by decomposing user needs and planning subtasks.<n>Through comprehensive experiments conducted across multiple datasets, TAIRA exhibits significantly enhanced performance compared to existing methods.
arXiv Detail & Related papers (2025-06-30T03:15:50Z) - PersonaAgent: When Large Language Model Agents Meet Personalization at Test Time [87.99027488664282]
PersonaAgent is a framework designed to address versatile personalization tasks.<n>It integrates a personalized memory module and a personalized action module.<n>Test-time user-preference alignment strategy ensures real-time user preference alignment.
arXiv Detail & Related papers (2025-06-06T17:29:49Z) - Towards Machine-Generated Code for the Resolution of User Intentions [2.762180345826837]
The advent of AI may signal a shift in user-provided intent resolution through the deployment of model-generated code.<n>In this paper, we investigate the feasibility of generating and executing through code generation that results from prompting an LLM with a concrete user intention.<n>We provide an in-depth analysis and comparison of various user intentions, the resulting code, and its execution.
arXiv Detail & Related papers (2025-04-24T13:19:17Z) - SmartAgent: Chain-of-User-Thought for Embodied Personalized Agent in Cyber World [50.937342998351426]
Chain-of-User-Thought (COUT) is a novel embodied reasoning paradigm.<n>We introduce SmartAgent, an agent framework perceiving cyber environments and reasoning personalized requirements.<n>Our work is the first to formulate the COUT process, serving as a preliminary attempt towards embodied personalized agent learning.
arXiv Detail & Related papers (2024-12-10T12:40:35Z) - Interactive Speculative Planning: Enhance Agent Efficiency through Co-design of System and User Interface [38.76937539085164]
This paper presents a human-centered efficient agent planning method -- Interactive Speculative Planning.
We aim at enhancing the efficiency of agent planning through both system design and human-AI interaction.
arXiv Detail & Related papers (2024-09-30T16:52:51Z) - Tell Me More! Towards Implicit User Intention Understanding of Language
Model Driven Agents [110.25679611755962]
Current language model-driven agents often lack mechanisms for effective user participation, which is crucial given the vagueness commonly found in user instructions.
We introduce Intention-in-Interaction (IN3), a novel benchmark designed to inspect users' implicit intentions through explicit queries.
We empirically train Mistral-Interact, a powerful model that proactively assesses task vagueness, inquires user intentions, and refines them into actionable goals.
arXiv Detail & Related papers (2024-02-14T14:36:30Z) - AgentCF: Collaborative Learning with Autonomous Language Agents for
Recommender Systems [112.76941157194544]
We propose AgentCF for simulating user-item interactions in recommender systems through agent-based collaborative filtering.
We creatively consider not only users but also items as agents, and develop a collaborative learning approach that optimize both kinds of agents together.
Overall, the optimized agents exhibit diverse interaction behaviors within our framework, including user-item, user-user, item-item, and collective interactions.
arXiv Detail & Related papers (2023-10-13T16:37:14Z) - Optimizing Interactive Systems via Data-Driven Objectives [70.3578528542663]
We propose an approach that infers the objective directly from observed user interactions.
These inferences can be made regardless of prior knowledge and across different types of user behavior.
We introduce Interactive System (ISO), a novel algorithm that uses these inferred objectives for optimization.
arXiv Detail & Related papers (2020-06-19T20:49:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.