Transformers for Secure Hardware Systems: Applications, Challenges, and Outlook
- URL: http://arxiv.org/abs/2505.22605v1
- Date: Wed, 28 May 2025 17:22:14 GMT
- Title: Transformers for Secure Hardware Systems: Applications, Challenges, and Outlook
- Authors: Banafsheh Saber Latibari, Najmeh Nazari, Avesta Sasan, Houman Homayoun, Pratik Satam, Soheil Salehi, Hossein Sayadi,
- Abstract summary: Transformer models have gained traction in the security domain due to their ability to model complex dependencies.<n>This survey provides a review of recent advancements on the use of Transformers in hardware security.<n>It examines their application across key areas such as side-channel analysis, hardware Trojan detection, vulnerability classification, device fingerprinting, and firmware security.
- Score: 2.9625426098772425
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The rise of hardware-level security threats, such as side-channel attacks, hardware Trojans, and firmware vulnerabilities, demands advanced detection mechanisms that are more intelligent and adaptive. Traditional methods often fall short in addressing the complexity and evasiveness of modern attacks, driving increased interest in machine learning-based solutions. Among these, Transformer models, widely recognized for their success in natural language processing and computer vision, have gained traction in the security domain due to their ability to model complex dependencies, offering enhanced capabilities in identifying vulnerabilities, detecting anomalies, and reinforcing system integrity. This survey provides a comprehensive review of recent advancements on the use of Transformers in hardware security, examining their application across key areas such as side-channel analysis, hardware Trojan detection, vulnerability classification, device fingerprinting, and firmware security. Furthermore, we discuss the practical challenges of applying Transformers to secure hardware systems, and highlight opportunities and future research directions that position them as a foundation for next-generation hardware-assisted security. These insights pave the way for deeper integration of AI-driven techniques into hardware security frameworks, enabling more resilient and intelligent defenses.
Related papers
- Secure Tug-of-War (SecTOW): Iterative Defense-Attack Training with Reinforcement Learning for Multimodal Model Security [63.41350337821108]
We propose Secure Tug-of-War (SecTOW) to enhance the security of multimodal large language models (MLLMs)<n>SecTOW consists of two modules: a defender and an auxiliary attacker, both trained iteratively using reinforcement learning (GRPO)<n>We show that SecTOW significantly improves security while preserving general performance.
arXiv Detail & Related papers (2025-07-29T17:39:48Z) - A Systematic Review of Security Vulnerabilities in Smart Home Devices and Mitigation Techniques [0.0]
The study explores security threats in smart homes ecosystems, categorizing them into vulnerabilities at the network layer, device level, and those from cloud-based and AI-driven systems.<n>Research findings indicate that post-quantum encryption, coupled with AI-driven anomaly detection, is highly effective in enhancing security.
arXiv Detail & Related papers (2025-04-03T00:03:53Z) - Towards Trustworthy GUI Agents: A Survey [64.6445117343499]
This survey examines the trustworthiness of GUI agents in five critical dimensions.<n>We identify major challenges such as vulnerability to adversarial attacks, cascading failure modes in sequential decision-making.<n>As GUI agents become more widespread, establishing robust safety standards and responsible development practices is essential.
arXiv Detail & Related papers (2025-03-30T13:26:00Z) - Modern Hardware Security: A Review of Attacks and Countermeasures [1.7265013728931]
In this paper, we review the current state of vulnerabilities and mitigation strategies in contemporary computing systems.<n>We discuss cache side-channel attacks (including Spectre and Meltdown), power side-channel attacks (such as Simple Power Analysis), and advanced techniques like Voltage Glitching and Electromagnetic Analysis.<n>The paper concludes with an analysis of the RISC-V architecture's unique security challenges.
arXiv Detail & Related papers (2025-01-08T10:14:19Z) - Physical and Software Based Fault Injection Attacks Against TEEs in Mobile Devices: A Systemisation of Knowledge [5.6064476854380825]
Trusted Execution Environments (TEEs) are critical components of modern secure computing.
They provide isolated zones in processors to safeguard sensitive data and execute secure operations.
Despite their importance, TEEs are increasingly vulnerable to fault injection (FI) attacks.
arXiv Detail & Related papers (2024-11-22T11:59:44Z) - ACRIC: Securing Legacy Communication Networks via Authenticated Cyclic Redundancy Integrity Check [98.34702864029796]
Recent security incidents in safety-critical industries exposed how the lack of proper message authentication enables attackers to inject malicious commands or alter system behavior.<n>These shortcomings have prompted new regulations that emphasize the pressing need to strengthen cybersecurity.<n>We introduce ACRIC, a message authentication solution to secure legacy industrial communications.
arXiv Detail & Related papers (2024-11-21T18:26:05Z) - The Emergence of Hardware Fuzzing: A Critical Review of its Significance [0.4943822978887544]
Hardware fuzzing, inspired by software testing methodologies, has gained prominence for its efficacy in identifying bugs within complex hardware designs.
Despite the introduction of various hardware fuzzing techniques, obstacles such as inefficient conversion of hardware modules into software models impede their effectiveness.
This work examines the reliability of existing hardware fuzzing techniques in identifying vulnerabilities and identifies research gaps for future advancements in design verification techniques.
arXiv Detail & Related papers (2024-03-19T15:12:11Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content.
In this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks.
We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity.
arXiv Detail & Related papers (2024-02-21T06:22:41Z) - HW-V2W-Map: Hardware Vulnerability to Weakness Mapping Framework for
Root Cause Analysis with GPT-assisted Mitigation Suggestion [3.847218857469107]
We presentHW-V2W-Map Framework, which is a Machine Learning (ML) framework focusing on hardware vulnerabilities and Internet of Things (IoT) security.
The architecture that we have proposed incorporates an Ontology-driven Storytelling framework, which automates the process of updating the Ontology.
Our proposed framework utilized Generative Pre-trained Transformer (GPT) Large Language Models (LLMs) to provide mitigation suggestions.
arXiv Detail & Related papers (2023-12-21T02:14:41Z) - A survey on hardware-based malware detection approaches [45.24207460381396]
Hardware-based malware detection approaches leverage hardware performance counters and machine learning prowess.
We meticulously analyze the approach, unraveling the most common methods, algorithms, tools, and datasets that shape its contours.
The discussion extends to crafting mixed hardware and software approaches for collaborative efficacy, essential enhancements in hardware monitoring units, and a better understanding of the correlation between hardware events and malware applications.
arXiv Detail & Related papers (2023-03-22T13:00:41Z) - Reinforcement Learning for Hardware Security: Opportunities,
Developments, and Challenges [6.87143729255904]
Reinforcement learning (RL) is a machine learning paradigm where an autonomous agent learns to make an optimal sequence of decisions.
This brief outlines the development of RL agents in detecting hardware Trojans, one of the most challenging hardware security problems.
arXiv Detail & Related papers (2022-08-29T20:57:35Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.