Disambiguating Pauli noise in quantum computers
- URL: http://arxiv.org/abs/2505.22629v1
- Date: Wed, 28 May 2025 17:46:17 GMT
- Title: Disambiguating Pauli noise in quantum computers
- Authors: Edward H. Chen, Senrui Chen, Laurin E. Fischer, Andrew Eddins, Luke C. G. Govia, Brad Mitchell, Andre He, Youngseok Kim, Liang Jiang, Alireza Seif,
- Abstract summary: We show that when learnable parameters are self-consistently characterized, the unlearnable (gauge) degrees of freedom do not impact predictions of noisy dynamics or error mitigation.<n>We use the recently introduced framework of gate set Pauli noise learning to efficiently and self-consistently characterize and mitigate noise of a complete gate set.
- Score: 5.9039349711987645
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To successfully perform quantum computations, it is often necessary to first accurately characterize the noise in the underlying hardware. However, it is well known that fundamental limitations prevent the unique identification of the noise. This raises the question of whether these limitations impact the ability to predict noisy dynamics and mitigate errors. Here, we show, both theoretically and experimentally, that when learnable parameters are self-consistently characterized, the unlearnable (gauge) degrees of freedom do not impact predictions of noisy dynamics or error mitigation. We use the recently introduced framework of gate set Pauli noise learning to efficiently and self-consistently characterize and mitigate noise of a complete gate set, including state preparation, measurements, single-qubit gates and multi-qubit entangling Clifford gates. We validate our approach through experiments with up to 92 qubits and show that while the gauge choice does not affect error-mitigated observable values, optimizing it reduces sampling overhead. Our findings address an outstanding issue involving the ambiguities in characterizing and mitigating quantum noise.
Related papers
- Bayesian Quantum Amplitude Estimation [49.1574468325115]
We present BAE, a problem-tailored and noise-aware Bayesian algorithm for quantum amplitude estimation.<n>In a fault tolerant scenario, BAE is capable of saturating the Heisenberg limit; if device noise is present, BAE can dynamically characterize it and self-adapt.<n>We propose a benchmark for amplitude estimation algorithms and use it to test BAE against other approaches.
arXiv Detail & Related papers (2024-12-05T18:09:41Z) - Dynamical quantum maps for single-qubit gates under universal non-Markovian noise [0.0]
Noise in quantum devices is ubiquitous and generally deleterious in settings where precision is required.
Here we derive a compact microscopic error model for single-qubit gates that only requires a single experimental input.
We find that experimental estimates of average gate errors measured through randomized benchmarking and reconstructed via quantum process tomography are tightly lower-bounded by our analytical estimates.
arXiv Detail & Related papers (2024-02-22T13:24:03Z) - Negative Pre-aware for Noisy Cross-modal Matching [46.5591267410225]
Cross-modal noise-robust learning is a challenging task since noisy correspondence is hard to recognize and rectify.
We present a novel Negative Pre-aware Cross-modal matching solution for large visual-language model fine-tuning on noisy downstream tasks.
arXiv Detail & Related papers (2023-12-10T05:52:36Z) - Emergence of noise-induced barren plateaus in arbitrary layered noise models [44.99833362998488]
In variational quantum algorithms the parameters of a parameterized quantum circuit are optimized in order to minimize a cost function that encodes the solution of the problem.
We discuss how, and in which sense, the phenomenon of noise-induced barren plateaus emerges in parameterized quantum circuits with a layered noise model.
arXiv Detail & Related papers (2023-10-12T15:18:27Z) - Scalable noisy quantum circuits for biased-noise qubits [37.69303106863453]
We consider biased-noise qubits affected only by bit-flip errors, which is motivated by existing systems of stabilized cat qubits.
For realistic noise models, phase-flip will not be negligible, but in the Pauli-Twirling approximation, we show that our benchmark could check the correctness of circuits containing up to $106$ gates.
arXiv Detail & Related papers (2023-05-03T11:27:50Z) - Error Mitigation Thresholds in Noisy Random Quantum Circuits [0.30723404270319693]
We study the robustness of probabilistic error cancellation and tensor network error mitigation when the noise is imperfectly characterized.
For one-dimensional circuits, error mitigation fails at an $mathcalO(1)$ time for any imperfection in the characterization of disorder.
We discuss further implications for tests of quantum computational advantage, fault-tolerant probes of measurement-induced phase transitions, and quantum algorithms in near-term devices.
arXiv Detail & Related papers (2023-02-08T19:00:01Z) - Certified Robustness of Quantum Classifiers against Adversarial Examples
through Quantum Noise [68.1992787416233]
We show that adding quantum random rotation noise can improve robustness in quantum classifiers against adversarial attacks.
We derive a certified robustness bound to enable quantum classifiers to defend against adversarial examples.
arXiv Detail & Related papers (2022-11-02T05:17:04Z) - Evaluating the Resilience of Variational Quantum Algorithms to Leakage
Noise [6.467585493563487]
Leakage noise is a damaging source of error that error correction approaches cannot handle.
The impact of this noise on the performance of variational quantum algorithms (VQAs) is yet unknown.
arXiv Detail & Related papers (2022-08-10T14:50:14Z) - The learnability of Pauli noise [3.251977404026275]
We give a precise characterization of the learnability of Pauli noise channels attached to Clifford gates.
We experimentally demonstrate noise characterization of IBM's CNOT gate up to 2 unlearnable degrees of freedom.
arXiv Detail & Related papers (2022-06-13T17:58:43Z) - Learning Noise via Dynamical Decoupling of Entangled Qubits [49.38020717064383]
Noise in entangled quantum systems is difficult to characterize due to many-body effects involving multiple degrees of freedom.
We develop and apply multi-qubit dynamical decoupling sequences that characterize noise that occurs during two-qubit gates.
arXiv Detail & Related papers (2022-01-26T20:22:38Z) - Error-Mitigated Quantum Metrology via Virtual Purification [0.0]
We propose an error-mitigated quantum metrology that can filter out unknown fluctuating noise.
We demonstrate that our protocol mitigates systematic errors and recovers superclassical scaling in a practical situation with time-inhomogeneous bias-inducing noise.
arXiv Detail & Related papers (2021-12-03T11:07:50Z) - Achieving fault tolerance against amplitude-damping noise [1.7289359743609742]
We develop a protocol for fault-tolerant encoded quantum computing components in the presence of amplitude-damping noise.
We describe a universal set of fault-tolerant encoded gadgets and compute the pseudothreshold for the noise.
Our work demonstrates the possibility of applying the ideas of quantum fault tolerance to targeted noise models.
arXiv Detail & Related papers (2021-07-12T14:59:54Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z) - Quantum noise protects quantum classifiers against adversaries [120.08771960032033]
Noise in quantum information processing is often viewed as a disruptive and difficult-to-avoid feature, especially in near-term quantum technologies.
We show that by taking advantage of depolarisation noise in quantum circuits for classification, a robustness bound against adversaries can be derived.
This is the first quantum protocol that can be used against the most general adversaries.
arXiv Detail & Related papers (2020-03-20T17:56:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.