論文の概要: Pre-training for Recommendation Unlearning
- arxiv url: http://arxiv.org/abs/2505.22649v1
- Date: Wed, 28 May 2025 17:57:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-29 17:35:50.788976
- Title: Pre-training for Recommendation Unlearning
- Title(参考訳): 推薦アンラーニングのための事前学習
- Authors: Guoxuan Chen, Lianghao Xia, Chao Huang,
- Abstract要約: UnlearnRecはモデルに依存しない事前学習パラダイムであり、効率的な未学習操作のためのシステムを準備している。
本手法は,再学習手法に比べて10倍以上の高速化を実現した。
- 参考スコア(独自算出の注目度): 14.514770044236375
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern recommender systems powered by Graph Neural Networks (GNNs) excel at modeling complex user-item interactions, yet increasingly face scenarios requiring selective forgetting of training data. Beyond user requests to remove specific interactions due to privacy concerns or preference changes, regulatory frameworks mandate recommender systems' ability to eliminate the influence of certain user data from models. This recommendation unlearning challenge presents unique difficulties as removing connections within interaction graphs creates ripple effects throughout the model, potentially impacting recommendations for numerous users. Traditional approaches suffer from significant drawbacks: fragmentation methods damage graph structure and diminish performance, while influence function techniques make assumptions that may not hold in complex GNNs, particularly with self-supervised or random architectures. To address these limitations, we propose a novel model-agnostic pre-training paradigm UnlearnRec that prepares systems for efficient unlearning operations. Our Influence Encoder takes unlearning requests together with existing model parameters and directly produces updated parameters of unlearned model with little fine-tuning, avoiding complete retraining while preserving model performance characteristics. Extensive evaluation on public benchmarks demonstrates that our method delivers exceptional unlearning effectiveness while providing more than 10x speedup compared to retraining approaches. We release our method implementation at: https://github.com/HKUDS/UnlearnRec.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)を利用した現代的なレコメンデータシステムは、複雑なユーザとイテムのインタラクションをモデル化する上で優れていますが、トレーニングデータの選択的忘れを要求されるシナリオがますます多くなっています。
プライバシの懸念や好みの変更による特定のインタラクションを削除するユーザリクエスト以外にも、規制フレームワークは、モデルから特定のユーザデータの影響を排除できるシステムの推奨機能を規定している。
このレコメンデーションアンラーニングの課題は、インタラクショングラフ内のコネクションを削除することがモデル全体に波及効果をもたらし、多くのユーザのレコメンデーションに影響を及ぼすという、ユニークな難しさを示している。
フラグメンテーション手法はグラフ構造を損傷し、性能を低下させる一方、影響関数の手法は複雑なGNN、特に自己監督的あるいはランダムなアーキテクチャでは成り立たない仮定を行う。
これらの制約に対処するために,モデルに依存しない事前学習パラダイムUnlearnRecを提案する。
我々のインフルエンコーダは、既存のモデルパラメータとともに未学習の要求を取り込み、微調整の少ない未学習モデルの更新パラメータを直接生成し、モデル性能特性を保ちながら、完全な再トレーニングを回避する。
評価結果から,本手法は再学習手法に比べて10倍以上の高速化を実現し,非学習効率が向上することが示された。
私たちはメソッドの実装をhttps://github.com/HKUDS/UnlearnRec.orgでリリースします。
関連論文リスト
- Alternate Preference Optimization for Unlearning Factual Knowledge in Large Language Models [2.0962367975513496]
機械学習は、特定のトレーニングデータの影響をモデルから効率的に排除することを目的としている。
既存の未学習手法は, 無視集合に関連する応答を抑制するために, 負のフィードバックのみに頼っている。
本稿では,AltPO(Alternate Preference Optimization)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-20T13:05:07Z) - Revisiting SMoE Language Models by Evaluating Inefficiencies with Task Specific Expert Pruning [78.72226641279863]
SMOE(Sparse Mixture of Expert)モデルは、言語モデリングにおける高密度モデルに代わるスケーラブルな代替品として登場した。
本研究は,SMoEアーキテクチャの設計に関する意思決定を行うために,タスク固有のモデルプルーニングについて検討する。
適応型タスク対応プルーニング手法 UNCURL を導入し,MoE 層当たりの専門家数をオフラインで学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-02T22:35:03Z) - Denoising Pre-Training and Customized Prompt Learning for Efficient Multi-Behavior Sequential Recommendation [69.60321475454843]
マルチビヘイビアシークエンシャルレコメンデーションに適した,最初の事前学習および迅速な学習パラダイムであるDPCPLを提案する。
事前学習段階において,複数の時間スケールでノイズを除去する新しい行動マイナ (EBM) を提案する。
次に,提案するCustomized Prompt Learning (CPL)モジュールを用いて,事前学習したモデルを高効率にチューニングすることを提案する。
論文 参考訳(メタデータ) (2024-08-21T06:48:38Z) - Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [52.03511469562013]
3つのコアコンポーネントで構成されるICU(Iterative Contrastive Unlearning)フレームワークを紹介する。
知識未学習誘導モジュールは、未学習の損失を使用して、特定の知識を除去するためにターゲットとする。
Contrastive Learning Enhancementモジュールは、純粋な未学習の目標に対してモデルの表現力を保持する。
イテレーティブ・アンラーニング・リファインメントモジュールは、進行中の評価と更新を通じて、アンラーニングプロセスを動的に調整する。
論文 参考訳(メタデータ) (2024-07-25T07:09:35Z) - Recommendation Unlearning via Influence Function [42.4931807753579]
本稿では,新しいインフルエンス関数に基づく推薦アンラーニング(IFRU, Recommendation Unlearning)フレームワークを提案する。
IFRUは、フルリトレーニングに匹敵するレコメンデーションパフォーマンスを持つリトレーニングベースの手法と比較して、250倍以上のアクセラレーションを実現している。
論文 参考訳(メタデータ) (2023-07-05T09:42:51Z) - GIF: A General Graph Unlearning Strategy via Influence Function [63.52038638220563]
Graph Influence Function (GIF)は、削除されたデータにおける$epsilon$-massの摂動に応答してパラメータの変化を効率的に正確に推定できる、モデルに依存しない未学習の手法である。
我々は,4つの代表的GNNモデルと3つのベンチマークデータセットについて広範な実験を行い,未学習の有効性,モデルの有用性,未学習効率の観点からGIFの優位性を正当化する。
論文 参考訳(メタデータ) (2023-04-06T03:02:54Z) - Effective and Efficient Training for Sequential Recommendation using
Recency Sampling [91.02268704681124]
本稿では,新しいRecency-based Smpling of Sequencesトレーニング目標を提案する。
提案手法により拡張されたモデルにより,最先端のBERT4Recに近い性能が得られることを示す。
論文 参考訳(メタデータ) (2022-07-06T13:06:31Z) - WSLRec: Weakly Supervised Learning for Neural Sequential Recommendation
Models [24.455665093145818]
我々は、WSLRecと呼ばれる新しいモデルに依存しないトレーニング手法を提案し、3段階のフレームワーク(事前学習、トップ$k$マイニング、本質的、微調整)を採用する。
WSLRec は、BR や ItemCF のようなモデルフリーメソッドから、余分な弱い監督のモデルを事前訓練することで、不完全性の問題を解決すると同時に、最上位の$k のマイニングを活用して、微調整のための弱い監督の信頼性の高いユーザ・イテム関連を検査することで、不正確な問題を解消する。
論文 参考訳(メタデータ) (2022-02-28T08:55:12Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
本稿では,シーケンスレコメンデーションのための自己改善学習のためのモデルS3-Recを提案する。
そこで本稿では,属性,項目,サブシーケンス,シーケンス間の相関関係を学習するために,4つの補助的自己教師対象を考案する。
6つの実世界のデータセットで実施された大規模な実験は、既存の最先端手法よりも提案手法が優れていることを示す。
論文 参考訳(メタデータ) (2020-08-18T11:44:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。