The Climb Carves Wisdom Deeper Than the Summit: On the Noisy Rewards in Learning to Reason
- URL: http://arxiv.org/abs/2505.22653v1
- Date: Wed, 28 May 2025 17:59:03 GMT
- Title: The Climb Carves Wisdom Deeper Than the Summit: On the Noisy Rewards in Learning to Reason
- Authors: Ang Lv, Ruobing Xie, Xingwu Sun, Zhanhui Kang, Rui Yan,
- Abstract summary: Our research investigates the impact of reward noise on post-training large language models.<n>We found that LLMs demonstrate strong robustness to substantial reward noise.<n>Our findings suggest the importance of improving models' foundational abilities during the pre-training phase.
- Score: 36.50007948478452
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent studies on post-training large language models (LLMs) for reasoning through reinforcement learning (RL) typically focus on tasks that can be accurately verified and rewarded, such as solving math problems. In contrast, our research investigates the impact of reward noise, a more practical consideration for real-world scenarios involving the post-training of LLMs using reward models. We found that LLMs demonstrate strong robustness to substantial reward noise. For example, manually flipping 40% of the reward function's outputs in math tasks still allows a Qwen-2.5-7B model to achieve rapid convergence, improving its performance on math tasks from 5% to 72%, compared to the 75% accuracy achieved by a model trained with noiseless rewards. Surprisingly, by only rewarding the appearance of key reasoning phrases (namely reasoning pattern reward, RPR), such as ``first, I need to''-without verifying the correctness of answers, the model achieved peak downstream performance (over 70% accuracy for Qwen-2.5-7B) comparable to models trained with strict correctness verification and accurate rewards. Recognizing the importance of the reasoning process over the final results, we combined RPR with noisy reward models. RPR helped calibrate the noisy reward models, mitigating potential false negatives and enhancing the LLM's performance on open-ended tasks. These findings suggest the importance of improving models' foundational abilities during the pre-training phase while providing insights for advancing post-training techniques. Our code and scripts are available at https://github.com/trestad/Noisy-Rewards-in-Learning-to-Reason.
Related papers
- Incentivizing LLMs to Self-Verify Their Answers [20.2584779107763]
Large Language Models (LLMs) have demonstrated remarkable progress in complex reasoning tasks.<n>We propose a framework that incentivizes LLMs to self-verify their own answers.<n>We train our self-verification models based on Qwen2.5-Math-7B and DeepSeek-R1-Distill-Qwen-1.5B.
arXiv Detail & Related papers (2025-06-02T06:54:29Z) - The Surprising Effectiveness of Negative Reinforcement in LLM Reasoning [43.310209758380886]
Reinforcement learning with verifiable rewards (RLVR) is a promising approach for training language models (LMs)<n>We decompose the learning signal into reinforcing correct responses and penalizing incorrect ones, referred to as Positive and Negative Sample Reinforcement (PSR and NSR)<n>We show that NSR works by suppressing incorrect generations and redistributing probability mass toward other plausible candidates, guided by the model's prior beliefs.
arXiv Detail & Related papers (2025-06-02T06:10:54Z) - AceReason-Nemotron: Advancing Math and Code Reasoning through Reinforcement Learning [50.02117478165099]
We show that large-scale reinforcement learning can significantly enhance the reasoning capabilities of strong, small- and mid-sized models.<n>We propose a simple yet effective approach: first training on math-only prompts, then on code-only prompts.
arXiv Detail & Related papers (2025-05-22T08:50:47Z) - Reward Reasoning Model [104.39256985858428]
Reward Reasoning Models (RRMs) are designed to execute a deliberate reasoning process before generating final rewards.<n>We implement a reinforcement learning framework that fosters self-evolved reward reasoning capabilities.<n> Notably, RRMs can adaptively exploit test-time compute to further improve reward accuracy.
arXiv Detail & Related papers (2025-05-20T17:58:03Z) - RM-R1: Reward Modeling as Reasoning [81.50471199906738]
Reasoning Reward Models (ReasRMs) formulate reward modeling as a reasoning task.<n>We propose a reasoning-oriented training pipeline and train a family of ReasRMs, RM-R1.<n>Our models achieve state-of-the-art performance across three reward model benchmarks on average.
arXiv Detail & Related papers (2025-05-05T06:11:12Z) - Stop Summation: Min-Form Credit Assignment Is All Process Reward Model Needs for Reasoning [25.817231106021552]
Process reward models (PRMs) have proven effective for test-time scaling of Large Language Models (LLMs) on challenging reasoning tasks.<n>However, reward hacking issues with PRMs limit their successful application in reinforcement fine-tuning.<n>In this paper, we identify the main cause of PRM-induced reward hacking: the canonical summation-form credit assignment in reinforcement learning.
arXiv Detail & Related papers (2025-04-21T17:59:02Z) - Exploring the Limit of Outcome Reward for Learning Mathematical Reasoning [65.2421542320293]
Reasoning abilities are crucial components of general intelligence.<n>Recent advances by proprietary companies, such as o-series models of OpenAI, have made remarkable progress on reasoning tasks.<n>This paper proposes a new RL framework, termed OREAL, to pursue the performance limit that can be achieved through textbfOutcome textbfREwtextbfArd-based reinforcement textbfLearning for mathematical reasoning tasks.
arXiv Detail & Related papers (2025-02-10T18:57:29Z) - On Designing Effective RL Reward at Training Time for LLM Reasoning [14.006845442313134]
We evaluate popular reward models for RL training, including the Outcome-supervised Reward Model (ORM) and the Process-supervised Reward Model (PRM)<n>Surprisingly, even though these learned reward models have strong inference-time performances, they may NOT help or even hurt RL training.<n>We introduce two novel reward refinement techniques, including Clipping and Delta.
arXiv Detail & Related papers (2024-10-19T13:53:50Z) - Improving Large Language Models via Fine-grained Reinforcement Learning with Minimum Editing Constraint [104.53687944498155]
Reinforcement learning (RL) has been widely used in training large language models (LLMs)
We propose a new RL method named RLMEC that incorporates a generative model as the reward model.
Based on the generative reward model, we design the token-level RL objective for training and an imitation-based regularization for stabilizing RL process.
arXiv Detail & Related papers (2024-01-11T17:58:41Z) - Let's Reinforce Step by Step [10.65244642965387]
We use Reinforcement Learning from Human Feedback to shape model reasoning processes.
Our results show that the fine-grained reward provided by PRM-based methods enhances accuracy on simple mathematical reasoning.
We also show the critical role reward aggregation functions play in model performance.
arXiv Detail & Related papers (2023-11-10T01:35:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.