Physiology-Informed Generative Multi-Task Network for Contrast-Free CT Perfusion
- URL: http://arxiv.org/abs/2505.22673v1
- Date: Mon, 12 May 2025 22:58:55 GMT
- Title: Physiology-Informed Generative Multi-Task Network for Contrast-Free CT Perfusion
- Authors: Wasif Khan, Kyle B. See, Simon Kato, Ziqian Huang, Amy Lazarte, Kyle Douglas, Xiangyang Lou, Teng J. Peng, Dhanashree Rajderkar, John Rees, Pina Sanelli, Amita Singh, Ibrahim Tuna, Christina A. Wilson, Ruogu Fang,
- Abstract summary: Multitask Automated Generation of Intermodal CT perfusion maps (MAGIC)<n>This framework combines generative artificial intelligence and physiological information to map non-contrast computed tomography (CT) imaging.<n>We demonstrate enhanced image fidelity by incorporating physiological characteristics into the loss terms.
- Score: 0.5537599694031133
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Perfusion imaging is extensively utilized to assess hemodynamic status and tissue perfusion in various organs. Computed tomography perfusion (CTP) imaging plays a key role in the early assessment and planning of stroke treatment. While CTP provides essential perfusion parameters to identify abnormal blood flow in the brain, the use of contrast agents in CTP can lead to allergic reactions and adverse side effects, along with costing USD 4.9 billion worldwide in 2022. To address these challenges, we propose a novel deep learning framework called Multitask Automated Generation of Intermodal CT perfusion maps (MAGIC). This framework combines generative artificial intelligence and physiological information to map non-contrast computed tomography (CT) imaging to multiple contrast-free CTP imaging maps. We demonstrate enhanced image fidelity by incorporating physiological characteristics into the loss terms. Our network was trained and validated using CT image data from patients referred for stroke at UF Health and demonstrated robustness to abnormalities in brain perfusion activity. A double-blinded study was conducted involving seven experienced neuroradiologists and vascular neurologists. This study validated MAGIC's visual quality and diagnostic accuracy showing favorable performance compared to clinical perfusion imaging with intravenous contrast injection. Overall, MAGIC holds great promise in revolutionizing healthcare by offering contrast-free, cost-effective, and rapid perfusion imaging.
Related papers
- Bayesian Deep Learning Approaches for Uncertainty-Aware Retinal OCT Image Segmentation for Multiple Sclerosis [0.0]
Optical Coherence Tomography ( OCT) provides valuable insights in ophthalmology, cardiology, and neurology.<n>One critical task for ophthalmologists using OCT is delineation of retinal layers within scans.<n>Previous efforts to automate delineation using deep learning face challenges in uptake from clinicians and statisticians.
arXiv Detail & Related papers (2025-05-17T15:56:17Z) - HepatoGEN: Generating Hepatobiliary Phase MRI with Perceptual and Adversarial Models [33.7054351451505]
We propose a deep learning based approach for synthesizing hepatobiliary phase (HBP) images from earlier contrast phases.<n> Quantitative evaluation using pixel-wise and perceptual metrics, combined with blinded radiologist reviews, showed that pGAN achieved the best quantitative performance.<n>In contrast, the U-Net produced consistent liver enhancement with fewer artifacts, while DDPM underperformed due to limited preservation of fine structural details.
arXiv Detail & Related papers (2025-04-25T15:01:09Z) - Dual-Task Vision Transformer for Rapid and Accurate Intracerebral Hemorrhage CT Image Classification [9.058538258023383]
Intracerebral hemorrhage (ICH) is a medical condition caused by the rupture of blood vessels in the brain.
We propose a neural network structure, dual-task vision transformer (DTViT) for the automated classification and diagnosis of ICH images.
arXiv Detail & Related papers (2024-05-10T21:17:31Z) - Feature-oriented Deep Learning Framework for Pulmonary Cone-beam CT
(CBCT) Enhancement with Multi-task Customized Perceptual Loss [9.59233136691378]
Cone-beam computed tomography (CBCT) is routinely collected during image-guided radiation therapy.
Recent deep learning-based CBCT enhancement methods have shown promising results in suppressing artifacts.
We propose a novel feature-oriented deep learning framework that translates low-quality CBCT images into high-quality CT-like imaging.
arXiv Detail & Related papers (2023-11-01T10:09:01Z) - CyTran: A Cycle-Consistent Transformer with Multi-Level Consistency for
Non-Contrast to Contrast CT Translation [56.622832383316215]
We propose a novel approach to translate unpaired contrast computed tomography (CT) scans to non-contrast CT scans.
Our approach is based on cycle-consistent generative adversarial convolutional transformers, for short, CyTran.
Our empirical results show that CyTran outperforms all competing methods.
arXiv Detail & Related papers (2021-10-12T23:25:03Z) - Symmetry-Enhanced Attention Network for Acute Ischemic Infarct
Segmentation with Non-Contrast CT Images [50.55978219682419]
We propose a symmetry enhanced attention network (SEAN) for acute ischemic infarct segmentation.
Our proposed network automatically transforms an input CT image into the standard space where the brain tissue is bilaterally symmetric.
The proposed SEAN outperforms some symmetry-based state-of-the-art methods in terms of both dice coefficient and infarct localization.
arXiv Detail & Related papers (2021-10-11T07:13:26Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
We introduce COVIDNet-CT, a deep convolutional neural network architecture that is tailored for detection of COVID-19 cases from chest CT images.
We also introduce COVIDx-CT, a benchmark CT image dataset derived from CT imaging data collected by the China National Center for Bioinformation.
arXiv Detail & Related papers (2020-09-08T15:49:55Z) - Cine Cardiac MRI Motion Artifact Reduction Using a Recurrent Neural
Network [18.433956246011466]
We propose a recurrent neural network to simultaneously extract both spatial and temporal features from motion-blurred cine cardiac images.
The experimental results demonstrate substantially improved image quality on two clinical test datasets.
arXiv Detail & Related papers (2020-06-23T01:55:57Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
We propose a diffusion encoding scheme, called Slice-Interleaved Diffusion.
SIDE, that interleaves each diffusion-weighted (DW) image volume with slices encoded with different diffusion gradients.
We also present a method based on deep learning for effective reconstruction of DW images from the highly slice-undersampled data.
arXiv Detail & Related papers (2020-02-25T14:48:17Z) - Microvascular Dynamics from 4D Microscopy Using Temporal Segmentation [81.30750944868142]
We are able to track changes in cerebral blood volume over time and identify spontaneous arterial dilations that propagate towards the pial surface.
This new imaging capability is a promising step towards characterizing the hemodynamic response function upon which functional magnetic resonance imaging (fMRI) is based.
arXiv Detail & Related papers (2020-01-14T22:55:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.