COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images
- URL: http://arxiv.org/abs/2009.05383v1
- Date: Tue, 8 Sep 2020 15:49:55 GMT
- Title: COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images
- Authors: Hayden Gunraj, Linda Wang, and Alexander Wong
- Abstract summary: We introduce COVIDNet-CT, a deep convolutional neural network architecture that is tailored for detection of COVID-19 cases from chest CT images.
We also introduce COVIDx-CT, a benchmark CT image dataset derived from CT imaging data collected by the China National Center for Bioinformation.
- Score: 75.74756992992147
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The coronavirus disease 2019 (COVID-19) pandemic continues to have a
tremendous impact on patients and healthcare systems around the world. In the
fight against this novel disease, there is a pressing need for rapid and
effective screening tools to identify patients infected with COVID-19, and to
this end CT imaging has been proposed as one of the key screening methods which
may be used as a complement to RT-PCR testing, particularly in situations where
patients undergo routine CT scans for non-COVID-19 related reasons, patients
with worsening respiratory status or developing complications that require
expedited care, and patients suspected to be COVID-19-positive but have
negative RT-PCR test results. Motivated by this, in this study we introduce
COVIDNet-CT, a deep convolutional neural network architecture that is tailored
for detection of COVID-19 cases from chest CT images via a machine-driven
design exploration approach. Additionally, we introduce COVIDx-CT, a benchmark
CT image dataset derived from CT imaging data collected by the China National
Center for Bioinformation comprising 104,009 images across 1,489 patient cases.
Furthermore, in the interest of reliability and transparency, we leverage an
explainability-driven performance validation strategy to investigate the
decision-making behaviour of COVIDNet-CT, and in doing so ensure that
COVIDNet-CT makes predictions based on relevant indicators in CT images. Both
COVIDNet-CT and the COVIDx-CT dataset are available to the general public in an
open-source and open access manner as part of the COVID-Net initiative. While
COVIDNet-CT is not yet a production-ready screening solution, we hope that
releasing the model and dataset will encourage researchers, clinicians, and
citizen data scientists alike to leverage and build upon them.
Related papers
- A Novel Implementation of Machine Learning for the Efficient,
Explainable Diagnosis of COVID-19 from Chest CT [0.0]
The aim of this study was to take a novel approach in the machine learning-based detection of COVID-19 from chest CT scans.
The proposed model attained an overall accuracy of 0.927 and a sensitivity of 0.958.
arXiv Detail & Related papers (2022-06-15T18:35:22Z) - COVIDx CT-3: A Large-scale, Multinational, Open-Source Benchmark Dataset
for Computer-aided COVID-19 Screening from Chest CT Images [82.74877848011798]
We introduce COVIDx CT-3, a large-scale benchmark dataset for detection of COVID-19 cases from chest CT images.
COVIDx CT-3 includes 431,205 CT slices from 6,068 patients across at least 17 countries.
We examine the data diversity and potential biases of the COVIDx CT-3 dataset, finding significant geographic and class imbalances.
arXiv Detail & Related papers (2022-06-07T06:35:48Z) - COVID-Net US: A Tailored, Highly Efficient, Self-Attention Deep
Convolutional Neural Network Design for Detection of COVID-19 Patient Cases
from Point-of-care Ultrasound Imaging [101.27276001592101]
We introduce COVID-Net US, a highly efficient, self-attention deep convolutional neural network design tailored for COVID-19 screening from lung POCUS images.
Experimental results show that the proposed COVID-Net US can achieve an AUC of over 0.98 while achieving 353X lower architectural complexity, 62X lower computational complexity, and 14.3X faster inference times on a Raspberry Pi.
To advocate affordable healthcare and artificial intelligence for resource-constrained environments, we have made COVID-Net US open source and publicly available as part of the COVID-Net open source initiative.
arXiv Detail & Related papers (2021-08-05T16:47:33Z) - COVID-Rate: An Automated Framework for Segmentation of COVID-19 Lesions
from Chest CT Scans [29.266579630983358]
During pandemic era, visual assessment and quantification of COVID-19 lung lesions by expert radiologists become expensive and prone to error.
This paper introduces an open access COVID-19 CT segmentation dataset containing 433 CT images from 82 patients that have been annotated by an expert radiologist.
A Deep Neural Network (DNN)-based framework is proposed, referred to as the COVID-Rate, that autonomously segments lung abnormalities associated with COVID-19 from chest CT scans.
arXiv Detail & Related papers (2021-07-04T03:19:43Z) - COVID-Net CXR-S: Deep Convolutional Neural Network for Severity
Assessment of COVID-19 Cases from Chest X-ray Images [74.77272804752306]
We introduce COVID-Net CXR-S, a convolutional neural network for predicting the airspace severity of a SARS-CoV-2 positive patient based on a CXR image of the patient's chest.
We leveraged transfer learning to transfer representational knowledge gained from over 16,000 CXR images from a multinational cohort of over 15,000 patient cases into a custom network architecture for severity assessment.
The proposed COVID-Net CXR-S has potential to be a powerful tool for computer-aided severity assessment of CXR images of COVID-19 positive patients.
arXiv Detail & Related papers (2021-05-01T14:15:12Z) - COVID-Net CT-2: Enhanced Deep Neural Networks for Detection of COVID-19
from Chest CT Images Through Bigger, More Diverse Learning [70.92379567261304]
We introduce COVID-Net CT-2, enhanced deep neural networks for COVID-19 detection from chest CT images.
We leverage explainability to investigate the decision-making behaviour of COVID-Net CT-2.
Results are promising and suggest the strong potential of deep neural networks as an effective tool for computer-aided COVID-19 assessment.
arXiv Detail & Related papers (2021-01-19T03:04:09Z) - Screening COVID-19 Based on CT/CXR Images & Building a Publicly
Available CT-scan Dataset of COVID-19 [6.142272540492935]
This study builds a large-size publicly available CT-scan dataset, consisting of more than 13k CT-images of more than 1000 individuals, in which 8k images are taken from 500 patients infected with COVID-19.
We propose a deep learning model for screening COVID-19 using our proposed CT dataset and report the baseline results.
Finally, we extend the proposed CT model for screening COVID-19 from CXR images using a transfer learning approach.
arXiv Detail & Related papers (2020-12-28T11:52:33Z) - COVID-19 CT Image Synthesis with a Conditional Generative Adversarial
Network [26.12568967493797]
Coronavirus disease 2019 (COVID-19) is an ongoing global pandemic that has spread rapidly since December 2019.
Real-time reverse transcription polymerase chain reaction (rRT-PCR) and chest computed tomography (CT) imaging both play an important role in COVID-19 diagnosis.
Deep-learning-based computer vision methods have demonstrated great promise for use in medical imaging applications.
arXiv Detail & Related papers (2020-07-29T07:20:06Z) - COVID-Net: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest X-Ray Images [93.0013343535411]
We introduce COVID-Net, a deep convolutional neural network design tailored for the detection of COVID-19 cases from chest X-ray (CXR) images.
To the best of the authors' knowledge, COVID-Net is one of the first open source network designs for COVID-19 detection from CXR images.
We also introduce COVIDx, an open access benchmark dataset that we generated comprising of 13,975 CXR images across 13,870 patient patient cases.
arXiv Detail & Related papers (2020-03-22T12:26:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.