Investigating the effectiveness of multimodal data in forecasting SARS-COV-2 case surges
- URL: http://arxiv.org/abs/2505.22688v2
- Date: Fri, 30 May 2025 02:18:00 GMT
- Title: Investigating the effectiveness of multimodal data in forecasting SARS-COV-2 case surges
- Authors: Palur Venkata Raghuvamsi, Siyuan Brandon Loh, Prasanta Bhattacharya, Joses Ho, Raphael Lee Tze Chuen, Alvin X. Han, Sebastian Maurer-Stroh,
- Abstract summary: The COVID-19 pandemic response relied heavily on statistical and machine learning models to predict key outcomes such as case prevalence and fatality rates.<n>While most existing models are grounded in traditional epidemiological data, the potential of alternative datasets, such as those derived from genomic information and human behavior, remains underexplored.<n>Our results highlight the relative effectiveness of biological (e.g., mutations), public health (e.g., case counts, policy interventions) and human behavioral features (e.g., mobility and social media conversations) in predicting country-level case surges.
- Score: 1.7265273723115717
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The COVID-19 pandemic response relied heavily on statistical and machine learning models to predict key outcomes such as case prevalence and fatality rates. These predictions were instrumental in enabling timely public health interventions that helped break transmission cycles. While most existing models are grounded in traditional epidemiological data, the potential of alternative datasets, such as those derived from genomic information and human behavior, remains underexplored. In the current study, we investigated the usefulness of diverse modalities of feature sets in predicting case surges. Our results highlight the relative effectiveness of biological (e.g., mutations), public health (e.g., case counts, policy interventions) and human behavioral features (e.g., mobility and social media conversations) in predicting country-level case surges. Importantly, we uncover considerable heterogeneity in predictive performance across countries and feature modalities, suggesting that surge prediction models may need to be tailored to specific national contexts and pandemic phases. Overall, our work highlights the value of integrating alternative data sources into existing disease surveillance frameworks to enhance the prediction of pandemic dynamics.
Related papers
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - A Short Survey of Human Mobility Prediction in Epidemic Modeling from Transformers to LLMs [0.0]
Understanding how people move during epidemics is essential for modeling the spread of diseases.
Forecasting population movement is crucial for informing models and facilitating effective response planning in public health emergencies.
We review a range of approaches utilizing both pretrained language models like BERT and Large Language Models (LLMs) tailored specifically for mobility prediction tasks.
arXiv Detail & Related papers (2024-04-25T17:52:19Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
This survey delves into various data-driven methodological and practical advancements.
We enumerate the large number of epidemiological datasets and novel data streams that are relevant to epidemic forecasting.
We also discuss experiences and challenges that arise in real-world deployment of these forecasting systems.
arXiv Detail & Related papers (2022-07-19T16:15:11Z) - Impact of Interventional Policies Including Vaccine on Covid-19
Propagation and Socio-Economic Factors [0.7874708385247353]
This study aims to provide a predictive analytics framework to model, predict and simulate COVID-19 propagation and socio-economic impact.
We have leveraged a recently launched open-source COVID-19 big data platform and used published research to find potentially relevant variables.
An advanced machine learning pipeline has been developed armed with a self-evolving model, deployed on a modern machine learning architecture.
arXiv Detail & Related papers (2021-01-11T15:08:07Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
We develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously.
STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations.
We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic.
arXiv Detail & Related papers (2020-12-08T21:21:47Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
We propose a general approach for learning time-variant parameters of dynamic compartmental models from epidemic data.
We forecast the epidemic evolution in Italy and France.
arXiv Detail & Related papers (2020-10-28T10:58:59Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z) - Data-driven Simulation and Optimization for Covid-19 Exit Strategies [16.31545249131776]
The rapid spread of the Coronavirus SARS-2 is a major challenge that led almost all governments worldwide to take drastic measures to respond to the tragedy.
We have built a pandemic simulation and forecasting toolkit that combines a deep learning estimation of the epidemiological parameters of the disease.
arXiv Detail & Related papers (2020-06-12T11:18:25Z) - Learning to Forecast and Forecasting to Learn from the COVID-19 Pandemic [10.796851110372593]
We propose a heterogeneous infection rate model with human mobility for epidemic modeling.
By linearizing the model and using weighted least squares, our model is able to quickly adapt to changing trends.
We show that during the earlier part of the epidemic, using travel data increases the predictions.
arXiv Detail & Related papers (2020-04-23T07:25:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.