Data-driven Simulation and Optimization for Covid-19 Exit Strategies
- URL: http://arxiv.org/abs/2006.07087v1
- Date: Fri, 12 Jun 2020 11:18:25 GMT
- Title: Data-driven Simulation and Optimization for Covid-19 Exit Strategies
- Authors: Salah Ghamizi, Renaud Rwemalika, Lisa Veiber, Maxime Cordy, Tegawende
F. Bissyande, Mike Papadakis, Jacques Klein and Yves Le Traon
- Abstract summary: The rapid spread of the Coronavirus SARS-2 is a major challenge that led almost all governments worldwide to take drastic measures to respond to the tragedy.
We have built a pandemic simulation and forecasting toolkit that combines a deep learning estimation of the epidemiological parameters of the disease.
- Score: 16.31545249131776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid spread of the Coronavirus SARS-2 is a major challenge that led
almost all governments worldwide to take drastic measures to respond to the
tragedy. Chief among those measures is the massive lockdown of entire countries
and cities, which beyond its global economic impact has created some deep
social and psychological tensions within populations. While the adopted
mitigation measures (including the lockdown) have generally proven useful,
policymakers are now facing a critical question: how and when to lift the
mitigation measures? A carefully-planned exit strategy is indeed necessary to
recover from the pandemic without risking a new outbreak. Classically, exit
strategies rely on mathematical modeling to predict the effect of public health
interventions. Such models are unfortunately known to be sensitive to some key
parameters, which are usually set based on rules-of-thumb.In this paper, we
propose to augment epidemiological forecasting with actual data-driven models
that will learn to fine-tune predictions for different contexts (e.g., per
country). We have therefore built a pandemic simulation and forecasting toolkit
that combines a deep learning estimation of the epidemiological parameters of
the disease in order to predict the cases and deaths, and a genetic algorithm
component searching for optimal trade-offs/policies between constraints and
objectives set by decision-makers. Replaying pandemic evolution in various
countries, we experimentally show that our approach yields predictions with
much lower error rates than pure epidemiological models in 75% of the cases and
achieves a 95% R2 score when the learning is transferred and tested on unseen
countries. When used for forecasting, this approach provides actionable
insights into the impact of individual measures and strategies.
Related papers
- Epidemic Control on a Large-Scale-Agent-Based Epidemiology Model using
Deep Deterministic Policy Gradient [0.7244731714427565]
lockdowns, rapid vaccination programs, school closures, and economic stimulus can have positive or unintended negative consequences.
Current research to model and determine an optimal intervention automatically through round-tripping is limited by the simulation objectives, scale (a few thousand individuals), model types that are not suited for intervention studies, and the number of intervention strategies they can explore (discrete vs continuous).
We address these challenges using a Deep Deterministic Policy Gradient (DDPG) based policy optimization framework on a large-scale (100,000 individual) epidemiological agent-based simulation.
arXiv Detail & Related papers (2023-04-10T09:26:07Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
This survey delves into various data-driven methodological and practical advancements.
We enumerate the large number of epidemiological datasets and novel data streams that are relevant to epidemic forecasting.
We also discuss experiences and challenges that arise in real-world deployment of these forecasting systems.
arXiv Detail & Related papers (2022-07-19T16:15:11Z) - Impact of Interventional Policies Including Vaccine on Covid-19
Propagation and Socio-Economic Factors [0.7874708385247353]
This study aims to provide a predictive analytics framework to model, predict and simulate COVID-19 propagation and socio-economic impact.
We have leveraged a recently launched open-source COVID-19 big data platform and used published research to find potentially relevant variables.
An advanced machine learning pipeline has been developed armed with a self-evolving model, deployed on a modern machine learning architecture.
arXiv Detail & Related papers (2021-01-11T15:08:07Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
We develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously.
STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations.
We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic.
arXiv Detail & Related papers (2020-12-08T21:21:47Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
We propose a general approach for learning time-variant parameters of dynamic compartmental models from epidemic data.
We forecast the epidemic evolution in Italy and France.
arXiv Detail & Related papers (2020-10-28T10:58:59Z) - Steering a Historical Disease Forecasting Model Under a Pandemic: Case
of Flu and COVID-19 [75.99038202534628]
We propose CALI-Net, a neural transfer learning architecture which allows us to'steer' a historical disease forecasting model to new scenarios where flu and COVID co-exist.
Our experiments demonstrate that our approach is successful in adapting a historical forecasting model to the current pandemic.
arXiv Detail & Related papers (2020-09-23T22:35:43Z) - Backtesting the predictability of COVID-19 [0.0]
We use historical data of COVID-19 infections from 253 regions from the period of 22nd January 2020 until 22nd June 2020.
Prediction errors are substantially higher in early stages of the pandemic, resulting from limited data.
The more confirmed cases a country exhibits at any point in time, the lower the error in forecasting future confirmed cases.
arXiv Detail & Related papers (2020-07-22T13:18:00Z) - A Deep Q-learning/genetic Algorithms Based Novel Methodology For
Optimizing Covid-19 Pandemic Government Actions [63.669642197519934]
We use the SEIR epidemiological model to represent the evolution of the virus COVID-19 over time in the population.
The sequences of actions (confinement, self-isolation, two-meter distance or not taking restrictions) are evaluated according to a reward system.
We prove that our methodology is a valid tool to discover actions governments can take to reduce the negative effects of a pandemic in both senses.
arXiv Detail & Related papers (2020-05-15T17:17:45Z) - When and How to Lift the Lockdown? Global COVID-19 Scenario Analysis and
Policy Assessment using Compartmental Gaussian Processes [111.69190108272133]
coronavirus disease 2019 (COVID-19) global pandemic has led many countries to impose unprecedented lockdown measures.
Data-driven models that predict COVID-19 fatalities under different lockdown policy scenarios are essential.
This paper develops a Bayesian model for predicting the effects of COVID-19 lockdown policies in a global context.
arXiv Detail & Related papers (2020-05-13T18:21:50Z) - Learning to Forecast and Forecasting to Learn from the COVID-19 Pandemic [10.796851110372593]
We propose a heterogeneous infection rate model with human mobility for epidemic modeling.
By linearizing the model and using weighted least squares, our model is able to quickly adapt to changing trends.
We show that during the earlier part of the epidemic, using travel data increases the predictions.
arXiv Detail & Related papers (2020-04-23T07:25:46Z) - Simulation of Covid-19 epidemic evolution: are compartmental models
really predictive? [0.0]
This paper addresses the question whether a SIR epidemiological model, enriched with asymptomatic and dead individual compartments, could provide reliable predictions on the epidemic evolution.
A machine learning approach based on particle swarm optimization (PSO) is proposed to automatically identify the model parameters based on a training set of data of progressive increasing size.
The analysis of the scatter in the forecasts shows that model predictions are quite sensitive to the size of the dataset used for training, and that further data are still required to achieve convergent -- and therefore reliable -- predictions.
arXiv Detail & Related papers (2020-04-14T08:42:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.