Provably Efficient Quantum Thermal State Preparation via Local Driving
- URL: http://arxiv.org/abs/2505.22816v1
- Date: Wed, 28 May 2025 19:48:07 GMT
- Title: Provably Efficient Quantum Thermal State Preparation via Local Driving
- Authors: Dominik Hahn, S. A. Parameswaran, Benedikt Placke,
- Abstract summary: The thermal density matrix $rho_betapropto e-beta H$ corresponding to a given Hamiltonian $H$ is a task of central interest across quantum many-body physics.<n>Here, we propose a scheme for approximately preparing quantum thermal states that only requires the [repeated] implementation of three readily available ingredients.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Preparing the thermal density matrix $\rho_{\beta}\propto e^{-\beta H}$ corresponding to a given Hamiltonian $H$ is a task of central interest across quantum many-body physics, and is particularly salient when attempting to study it with quantum computers. Although solved {in principle} by recent constructions of efficiently simulable Lindblad master equations -- that provably have $\rho_{\beta}$ as a steady state [C.-F. Chen {\it et al}, arXiv:2311.09207] -- their implementation requires large-scale quantum computational resources and is hence challenging {in practice} on current or even near-term quantum devices. Here, we propose a scheme for approximately preparing quantum thermal states that only requires the [repeated] implementation of three readily available ingredients: (a) analog simulation of $H$; (b) strictly local but time-dependent couplings to ancilla qubits; and (c) reset of the ancillas. We give rigorous performance guarantees independent of detailed physical knowledge of $H$ beyond its locality.
Related papers
- Slow Mixing of Quantum Gibbs Samplers [47.373245682678515]
We present a quantum generalization of these tools through a generic bottleneck lemma.<n>This lemma focuses on quantum measures of distance, analogous to the classical Hamming distance but rooted in uniquely quantum principles.<n>We show how to lift classical slow mixing results in the presence of a transverse field using Poisson Feynman-Kac techniques.
arXiv Detail & Related papers (2024-11-06T22:51:27Z) - Observation of a non-Hermitian supersonic mode on a trapped-ion quantum computer [6.846670002217106]
We demonstrate the power of variational quantum circuits for resource-efficient simulations of dynamical and equilibrium physics in non-Hermitian systems.<n>Using a variational quantum compilation scheme for fermionic systems, we reduce gate count, save qubits, and eliminate the need for postselection.<n>We provide an analytical example demonstrating that simulating single-qubit non-Hermitian dynamics for $Theta(log(n))$ time from certain initial states is exponentially hard on a quantum computer.
arXiv Detail & Related papers (2024-06-21T18:00:06Z) - Spin coupling is all you need: Encoding strong electron correlation in molecules on quantum computers [0.0]
We show that quantum computers can efficiently simulate strongly correlated molecular systems by directly encoding the dominant entanglement structure in the form of spin-coupled initial states.<n>Our work provides a crucial component for enabling scalable quantum simulation of classically challenging electronic systems.
arXiv Detail & Related papers (2024-04-29T17:14:21Z) - An efficient and exact noncommutative quantum Gibbs sampler [0.0]
We construct the first efficiently implementable and exactly detailed-balanced Lindbladian for Gibbs states of arbitrary noncommutative Hamiltonians.
Our construction can also be regarded as a continuous-time quantum analog of the Metropolis-Hastings algorithm.
arXiv Detail & Related papers (2023-11-15T18:51:24Z) - Quantum Thermal State Preparation [39.91303506884272]
We introduce simple continuous-time quantum Gibbs samplers for simulating quantum master equations.
We construct the first provably accurate and efficient algorithm for preparing certain purified Gibbs states.
Our algorithms' costs have a provable dependence on temperature, accuracy, and the mixing time.
arXiv Detail & Related papers (2023-03-31T17:29:56Z) - Sparse random Hamiltonians are quantumly easy [105.6788971265845]
A candidate application for quantum computers is to simulate the low-temperature properties of quantum systems.
This paper shows that, for most random Hamiltonians, the maximally mixed state is a sufficiently good trial state.
Phase estimation efficiently prepares states with energy arbitrarily close to the ground energy.
arXiv Detail & Related papers (2023-02-07T10:57:36Z) - Quantum algorithms for estimating quantum entropies [6.211541620389987]
We propose quantum algorithms to estimate the von Neumann and quantum $alpha$-R'enyi entropies of an fundamental quantum state.
We also show how to efficiently construct the quantum entropy circuits for quantum entropy estimation using single copies of the input state.
arXiv Detail & Related papers (2022-03-04T15:44:24Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z) - Simulation of Thermal Relaxation in Spin Chemistry Systems on a Quantum
Computer Using Inherent Qubit Decoherence [53.20999552522241]
We seek to take advantage of qubit decoherence as a resource in simulating the behavior of real world quantum systems.
We present three methods for implementing the thermal relaxation.
We find excellent agreement between our results, experimental data, and the theoretical prediction.
arXiv Detail & Related papers (2020-01-03T11:48:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.