論文の概要: Scaling Offline RL via Efficient and Expressive Shortcut Models
- arxiv url: http://arxiv.org/abs/2505.22866v1
- Date: Wed, 28 May 2025 20:59:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-30 18:14:07.540072
- Title: Scaling Offline RL via Efficient and Expressive Shortcut Models
- Title(参考訳): 効率的なショートカットモデルによるオフラインRLのスケーリング
- Authors: Nicolas Espinosa-Dice, Yiyi Zhang, Yiding Chen, Bradley Guo, Owen Oertell, Gokul Swamy, Kiante Brantley, Wen Sun,
- Abstract要約: ノイズサンプリングプロセスの反復性のため, オフライン強化学習(RL)は依然として困難である。
本稿では、ショートカットモデルを利用してトレーニングと推論の両方をスケールする新しいオフラインRLアルゴリズムであるScalable Offline Reinforcement Learning (SORL)を紹介する。
我々は、SORLがオフラインのRLタスクにまたがって高い性能を達成し、テスト時間計算の増大とともに正のスケーリング挙動を示すことを示した。
- 参考スコア(独自算出の注目度): 13.050231036248338
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion and flow models have emerged as powerful generative approaches capable of modeling diverse and multimodal behavior. However, applying these models to offline reinforcement learning (RL) remains challenging due to the iterative nature of their noise sampling processes, making policy optimization difficult. In this paper, we introduce Scalable Offline Reinforcement Learning (SORL), a new offline RL algorithm that leverages shortcut models - a novel class of generative models - to scale both training and inference. SORL's policy can capture complex data distributions and can be trained simply and efficiently in a one-stage training procedure. At test time, SORL introduces both sequential and parallel inference scaling by using the learned Q-function as a verifier. We demonstrate that SORL achieves strong performance across a range of offline RL tasks and exhibits positive scaling behavior with increased test-time compute. We release the code at nico-espinosadice.github.io/projects/sorl.
- Abstract(参考訳): 拡散と流れのモデルは、多様なマルチモーダルな振る舞いをモデル化できる強力な生成的アプローチとして現れてきた。
しかし、これらのモデルをオフライン強化学習(RL)に適用することは、ノイズサンプリングプロセスの反復性のため、政策最適化を困難にしている。
本稿では,新しい生成モデルであるショートカットモデルを利用するオフラインRLアルゴリズムであるScalable Offline Reinforcement Learning (SORL)を導入して,トレーニングと推論の両方をスケールする。
SORLのポリシは複雑なデータ分布をキャプチャし、ワンステージのトレーニング手順でシンプルかつ効率的にトレーニングすることができる。
テスト時に、SORLは、学習したQ-関数を検証子として使用することにより、シーケンシャルと並列の推論スケーリングの両方を導入する。
我々は、SORLがオフラインのRLタスクにまたがって高い性能を達成し、テスト時間計算の増大とともに正のスケーリング挙動を示すことを示した。
Nico-espinosadice.github.io/projects/sorlでコードをリリースします。
関連論文リスト
- Normalizing Flows are Capable Models for RL [24.876149287707847]
本稿では,強化学習アルゴリズムにシームレスに統合した単一正規化フローアーキテクチャを提案する。
提案手法はより単純なアルゴリズムに導かれ,模倣学習,オフライン,目標条件付きRL,教師なしRLにおいて高い性能を実現する。
論文 参考訳(メタデータ) (2025-05-29T15:06:22Z) - Echo Chamber: RL Post-training Amplifies Behaviors Learned in Pretraining [74.83412846804977]
強化学習(RL)に基づく微調整は、訓練後の言語モデルにおいて重要なステップとなっている。
数理推論のためのRLファインタニングを、スクラッチから完全にトレーニングモデルを用いて体系的にエンドツーエンドに研究する。
論文 参考訳(メタデータ) (2025-04-10T17:15:53Z) - Asynchronous RLHF: Faster and More Efficient Off-Policy RL for Language Models [11.624678008637623]
RLHFにおける生成と学習の分離を提案する。
オンラインDPOは、政治以外のデータに対して最も堅牢である。
非同期トレーニングは、オンラインだが非政治的なRLHFという未調査の制度に依存している。
論文 参考訳(メタデータ) (2024-10-23T19:59:50Z) - Compressing Deep Reinforcement Learning Networks with a Dynamic
Structured Pruning Method for Autonomous Driving [63.155562267383864]
深部強化学習(DRL)は複雑な自律運転シナリオにおいて顕著な成功を収めている。
DRLモデルは、必然的に高いメモリ消費と計算をもたらし、リソース限定の自動運転デバイスへの広範な展開を妨げる。
そこで本研究では,DRLモデルの非重要なニューロンを段階的に除去する,新しい動的構造化プルーニング手法を提案する。
論文 参考訳(メタデータ) (2024-02-07T09:00:30Z) - Action-Quantized Offline Reinforcement Learning for Robotic Skill
Learning [68.16998247593209]
オフライン強化学習(RL)パラダイムは、静的な行動データセットを、データを収集したポリシーよりも優れたパフォーマンスのポリシーに変換するためのレシピを提供する。
本稿では,アクション量子化のための適応型スキームを提案する。
IQL,CQL,BRACといった最先端のオフラインRL手法が,提案手法と組み合わせることで,ベンチマークのパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2023-10-18T06:07:10Z) - Bootstrapped Transformer for Offline Reinforcement Learning [31.43012728924881]
オフライン強化学習(RL)は、以前に収集した静的な軌跡データから実際の環境と相互作用することなく、ポリシーを学習することを目的としている。
最近の研究は、オフラインRLを汎用シーケンス生成問題として見ることによって、新しい視点を提供する。
本稿では,ブートストラップの概念を取り入れたBootstrapped Transformerという新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-06-17T05:57:47Z) - Jump-Start Reinforcement Learning [68.82380421479675]
本稿では、オフラインデータやデモ、あるいは既存のポリシーを使ってRLポリシーを初期化するメタアルゴリズムを提案する。
特に,タスク解決に2つのポリシーを利用するアルゴリズムであるJump-Start Reinforcement Learning (JSRL)を提案する。
実験により、JSRLは既存の模倣と強化学習アルゴリズムを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2022-04-05T17:25:22Z) - POAR: Efficient Policy Optimization via Online Abstract State
Representation Learning [6.171331561029968]
状態表現学習(SRL)は,複雑な感覚データからタスク関連特徴を低次元状態に符号化する。
我々は、SRLの解釈を改善するために、専門家のデモンストレーションを活用するために、ドメイン類似と呼ばれる新しいSRLを導入する。
我々はPOARを実証的に検証し、高次元のタスクを効率的に処理し、スクラッチから直接実生活ロボットの訓練を容易にする。
論文 参考訳(メタデータ) (2021-09-17T16:52:03Z) - Text Generation with Efficient (Soft) Q-Learning [91.47743595382758]
強化学習(RL)は、任意のタスクメトリクスを報酬としてプラグインすることで、より柔軟なソリューションを提供する。
ソフトQ-ラーニングの観点からテキスト生成のための新しいRL式を導入する。
雑音/負の例から学習し、敵攻撃、即時生成など、幅広いタスクにアプローチを適用する。
論文 参考訳(メタデータ) (2021-06-14T18:48:40Z) - Reinforcement Learning as One Big Sequence Modeling Problem [84.84564880157149]
強化学習(Reinforcement Learning, RL)は、通常、単一ステップポリシーや単一ステップモデルの推定に関係している。
我々は、RLをシーケンスモデリング問題とみなし、高い報酬のシーケンスにつながる一連のアクションを予測することを目標としている。
論文 参考訳(メタデータ) (2021-06-03T17:58:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。