論文の概要: Directed Graph Grammars for Sequence-based Learning
- arxiv url: http://arxiv.org/abs/2505.22949v1
- Date: Thu, 29 May 2025 00:05:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-30 18:14:07.592631
- Title: Directed Graph Grammars for Sequence-based Learning
- Title(参考訳): 逐次学習のための直接グラフ文法
- Authors: Michael Sun, Orion Foo, Gang Liu, Wojciech Matusik, Jie Chen,
- Abstract要約: 有向非巡回グラフ(英: Directed acyclic graph、DAG)は、実際には一般的に用いられるグラフのクラスである。
本稿では,DAGの原理的,コンパクトかつ等価な逐次表現を構築するための文法に基づく手法を提案する。
- 参考スコア(独自算出の注目度): 20.579076532082684
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Directed acyclic graphs (DAGs) are a class of graphs commonly used in practice, with examples that include electronic circuits, Bayesian networks, and neural architectures. While many effective encoders exist for DAGs, it remains challenging to decode them in a principled manner, because the nodes of a DAG can have many different topological orders. In this work, we propose a grammar-based approach to constructing a principled, compact and equivalent sequential representation of a DAG. Specifically, we view a graph as derivations over an unambiguous grammar, where the DAG corresponds to a unique sequence of production rules. Equivalently, the procedure to construct such a description can be viewed as a lossless compression of the data. Such a representation has many uses, including building a generative model for graph generation, learning a latent space for property prediction, and leveraging the sequence representational continuity for Bayesian Optimization over structured data. Code is available at https://github.com/shiningsunnyday/induction.
- Abstract(参考訳): 直接非巡回グラフ(英: Directed acyclic graph、DAG)は、電子回路、ベイズネットワーク、ニューラルアーキテクチャなど、実際によく使われるグラフのクラスである。
DAGには多くの効果的なエンコーダが存在するが、DAGのノードは多くの異なるトポロジ的順序を持つため、原則的にそれらをデコードすることは依然として困難である。
本研究では,DAGの原理的,コンパクトかつ等価な逐次表現を構築するための文法に基づく手法を提案する。
具体的には、グラフを不明瞭な文法上の導出とみなし、DAGは生産規則のユニークな順序に対応する。
同様に、そのような記述を構築する手順は、データのロスレス圧縮と見なすことができる。
このような表現には、グラフ生成のための生成モデルの構築、プロパティ予測のための潜在空間の学習、構造化データに対するベイズ最適化のためのシーケンス表現連続性の利用など、多くの用途がある。
コードはhttps://github.com/shiningsunnyday/induction.comで入手できる。
関連論文リスト
- Best of Both Worlds: Advantages of Hybrid Graph Sequence Models [20.564009321626198]
グラフ上での学習にグラフシーケンスモデルを採用するための統一フレームワークを提案する。
本稿では,グローバルおよびローカルなグラフタスクのレンズを用いて,トランスフォーマーと現代のリカレントモデルの表現能力を評価する。
GSM++は階層的親和性クラスタリング(HAC)アルゴリズムを用いてグラフを階層的シーケンスにトークン化する高速ハイブリッドモデルである。
論文 参考訳(メタデータ) (2024-11-23T23:24:42Z) - GraphCroc: Cross-Correlation Autoencoder for Graph Structural Reconstruction [6.817416560637197]
グラフオートエンコーダ(GAE)はノード埋め込みからグラフ構造を再構築する。
我々はGAE表現能力を著しく向上する相互相関機構を導入する。
また、さまざまな下流タスクに適したフレキシブルエンコーダアーキテクチャをサポートする新しいGAEであるGraphCrocを提案する。
論文 参考訳(メタデータ) (2024-10-04T12:59:45Z) - Discrete Graph Auto-Encoder [52.50288418639075]
離散グラフオートエンコーダ(DGAE)という新しいフレームワークを導入する。
まず、置換同変オートエンコーダを用いてグラフを離散潜在ノード表現の集合に変換する。
2番目のステップでは、離散潜在表現の集合をソートし、特別に設計された自己回帰モデルを用いてそれらの分布を学習する。
論文 参考訳(メタデータ) (2023-06-13T12:40:39Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
本稿では,高次元分布をモデル化し,グラフスケルトンと整合した複雑な関係特徴構造を持つデータの新しい例を生成することの問題点を考察する。
提案するモデルは,タスクを2つのフェーズに分割することで,各データポイントのグラフ構造に制約されたデータ特徴を生成する問題に対処する。
第一に、与えられたグラフのノードに関連する機能の分布をモデル化し、第二に、ノードのフィーチャに条件付きでエッジ機能を補完する。
論文 参考訳(メタデータ) (2022-12-01T11:49:07Z) - Latent Graph Inference using Product Manifolds [0.0]
遅延グラフ学習のための離散微分可能グラフモジュール(dDGM)を一般化する。
我々の新しいアプローチは、幅広いデータセットでテストされ、元のdDGMモデルよりも優れています。
論文 参考訳(メタデータ) (2022-11-26T22:13:06Z) - Similarity-aware Positive Instance Sampling for Graph Contrastive
Pre-training [82.68805025636165]
トレーニングセット内の既存グラフから直接正のグラフインスタンスを選択することを提案する。
私たちの選択は、特定のドメイン固有のペアワイズ類似度測定に基づいています。
さらに,ノードを動的にマスキングしてグラフ上に均等に分配する適応ノードレベルの事前学習手法を開発した。
論文 参考訳(メタデータ) (2022-06-23T20:12:51Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
本稿では,AGE という逆グラフ埋め込みのための頑健なフレームワークを提案する。
AGEは、暗黙の分布から強化された負のサンプルとして偽の隣接ノードを生成する。
本フレームワークでは,3種類のグラフデータを扱う3つのモデルを提案する。
論文 参考訳(メタデータ) (2021-05-22T07:05:48Z) - Embedding Graph Auto-Encoder for Graph Clustering [90.8576971748142]
グラフ自動エンコーダ(GAE)モデルは、半教師付きグラフ畳み込みネットワーク(GCN)に基づく
我々は、グラフクラスタリングのための特定のGAEベースのモデルを設計し、その理論、すなわち、埋め込みグラフオートエンコーダ(EGAE)と整合する。
EGAEは1つのエンコーダと2つのデコーダで構成される。
論文 参考訳(メタデータ) (2020-02-20T09:53:28Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。