Agile Orchestration at Will: An Entire Smart Service-Based Security Architecture Towards 6G
- URL: http://arxiv.org/abs/2505.22963v2
- Date: Wed, 18 Jun 2025 10:53:35 GMT
- Title: Agile Orchestration at Will: An Entire Smart Service-Based Security Architecture Towards 6G
- Authors: Zhuoran Duan, Guoshun Nan, Rushan Li, Zijun Wang, Lihua Xiong, Chaoying Yuan, Guorong Liu, Hui Xu, Qimei Cui, Xiaofeng Tao, Tony Q. S. Quek,
- Abstract summary: We propose ES3A (Entire Smart Service-based Security Architecture), a novel security architecture for 6G networks.<n>Our architecture consists of three layers and three domains. It relies on a two-stage orchestration mechanism to tailor smart security strategies for customized protection in high-dynamic 6G networks.
- Score: 43.63515130049697
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The upcoming 6G will fundamentally reshape mobile networks beyond communications, unlocking a multitude of applications that were once considered unimaginable. Meanwhile, security and resilience are especially highlighted in the 6G design principles. However, safeguarding 6G networks will be quite challenging due to various known and unknown threats from highly heterogeneous networks and diversified security requirements of distinct use cases, calling for a comprehensive re-design of security architecture. This motivates us to propose ES3A (Entire Smart Service-based Security Architecture), a novel security architecture for 6G networks. Specifically, we first discuss six high-level principles of our ES3A that include hierarchy, flexibility, scalability, resilience, endogeny, and trust and privacy. With these goals in mind, we then introduce three guidelines from a deployment perspective, envisioning our ES3A that offers service-based security, end-to-end protection, and smart security automation for 6G networks. Our architecture consists of three layers and three domains. It relies on a two-stage orchestration mechanism to tailor smart security strategies for customized protection in high-dynamic 6G networks, thereby addressing the aforementioned challenges. Finally, we prototype the proposed ES3A on a real-world radio system based on Software-Defined Radio (SDR). Experiments show the effectiveness of our ES3A. We also provide a case to show the superiority of our architecture.
Related papers
- Measuring Security in 5G and Future Networks [0.0]
Mobile networks, such as 5G and future generations such as 6G, play a pivotal role and must be considered as critical infrastructures.<n>We introduce a state machine model designed to capture the security life cycle of network functions.<n>We identify three essential security metrics -- attack surface exposure, impact of system vulnerabilities, and effectiveness of applied security controls.
arXiv Detail & Related papers (2025-05-09T04:24:17Z) - An LLM-based Self-Evolving Security Framework for 6G Space-Air-Ground Integrated Networks [49.605335601285496]
6G space-air-ground integrated networks (SAGINs) offer ubiquitous coverage for various mobile applications.<n>We propose a novel security framework for SAGINs based on Large Language Models (LLMs)<n>Our framework produces highly accurate security strategies that remain robust against a variety of unknown attacks.
arXiv Detail & Related papers (2025-05-06T04:14:13Z) - An Intelligent Native Network Slicing Security Architecture Empowered by Federated Learning [0.0]
We propose an architecture-intelligent security mechanism to improve the Network Slicing solutions.
We identify Distributed Denial-of-Service (DDoS) and intrusion attacks within the slice using generic and non-native telemetry records.
arXiv Detail & Related papers (2024-10-04T21:12:23Z) - Toward Mixture-of-Experts Enabled Trustworthy Semantic Communication for 6G Networks [82.3753728955968]
We introduce a novel Mixture-of-Experts (MoE)-based SemCom system.
This system comprises a gating network and multiple experts, each specializing in different security challenges.
The gating network adaptively selects suitable experts to counter heterogeneous attacks based on user-defined security requirements.
A case study in vehicular networks demonstrates the efficacy of the MoE-based SemCom system.
arXiv Detail & Related papers (2024-09-24T03:17:51Z) - Penetration Testing of 5G Core Network Web Technologies [53.89039878885825]
We present the first security assessment of the 5G core from a web security perspective.
We use the STRIDE threat modeling approach to define a complete list of possible threat vectors and associated attacks.
Our analysis shows that all these cores are vulnerable to at least two of our identified attack vectors.
arXiv Detail & Related papers (2024-03-04T09:27:11Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content.
In this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks.
We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity.
arXiv Detail & Related papers (2024-02-21T06:22:41Z) - Toward 6G Native-AI Network: Foundation Model based Cloud-Edge-End Collaboration Framework [55.73948386625618]
We analyze the challenges of achieving 6G native AI from perspectives of data, AI models, and operational paradigm.<n>We propose a 6G native AI framework based on foundation models, provide an integration method for the expert knowledge, present the customization for two kinds of PFM, and outline a novel operational paradigm for the native AI framework.
arXiv Detail & Related papers (2023-10-26T15:19:40Z) - Intelligent Zero Trust Architecture for 5G/6G Tactical Networks:
Principles, Challenges, and the Role of Machine Learning [4.314956204483074]
We highlight the challenges and introduce the concept of an intelligent zero trust architecture (i-ZTA) as a security framework in 5G/6G networks with untrusted components.
This paper presents the architectural design of an i-ZTA upon which modern artificial intelligence (AI) algorithms can be developed to provide information security in untrusted networks.
arXiv Detail & Related papers (2021-05-04T13:14:29Z) - Towards Self-learning Edge Intelligence in 6G [143.1821636135413]
Edge intelligence, also called edge-native artificial intelligence (AI), is an emerging technological framework focusing on seamless integration of AI, communication networks, and mobile edge computing.
In this article, we identify the key requirements and challenges of edge-native AI in 6G.
arXiv Detail & Related papers (2020-10-01T02:16:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.