An LLM-based Self-Evolving Security Framework for 6G Space-Air-Ground Integrated Networks
- URL: http://arxiv.org/abs/2505.03161v2
- Date: Wed, 07 May 2025 16:04:25 GMT
- Title: An LLM-based Self-Evolving Security Framework for 6G Space-Air-Ground Integrated Networks
- Authors: Qi Qin, Xinye Cao, Guoshun Nan, Sihan Chen, Rushan Li, Li Su, Haitao Du, Qimei Cui, Pengxuan Mao, Xiaofeng Tao, Tony Q. S. Quek,
- Abstract summary: 6G space-air-ground integrated networks (SAGINs) offer ubiquitous coverage for various mobile applications.<n>We propose a novel security framework for SAGINs based on Large Language Models (LLMs)<n>Our framework produces highly accurate security strategies that remain robust against a variety of unknown attacks.
- Score: 49.605335601285496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently emerged 6G space-air-ground integrated networks (SAGINs), which integrate satellites, aerial networks, and terrestrial communications, offer ubiquitous coverage for various mobile applications. However, the highly dynamic, open, and heterogeneous nature of SAGINs poses severe security issues. Forming a defense line of SAGINs suffers from two preliminary challenges: 1) accurately understanding massive unstructured multi-dimensional threat information to generate defense strategies against various malicious attacks, 2) rapidly adapting to potential unknown threats to yield more effective security strategies. To tackle the above two challenges, we propose a novel security framework for SAGINs based on Large Language Models (LLMs), which consists of two key ingredients LLM-6GNG and 6G-INST. Our proposed LLM-6GNG leverages refined chain-of-thought (CoT) reasoning and dynamic multi-agent mechanisms to analyze massive unstructured multi-dimensional threat data and generate comprehensive security strategies, thus addressing the first challenge. Our proposed 6G-INST relies on a novel self-evolving method to automatically update LLM-6GNG, enabling it to accommodate unknown threats under dynamic communication environments, thereby addressing the second challenge. Additionally, we prototype the proposed framework with ns-3, OpenAirInterface (OAI), and software-defined radio (SDR). Experiments on three benchmarks demonstrate the effectiveness of our framework. The results show that our framework produces highly accurate security strategies that remain robust against a variety of unknown attacks. We will release our code to contribute to the community.
Related papers
- Generative AI-Empowered Secure Communications in Space-Air-Ground Integrated Networks: A Survey and Tutorial [107.26005706569498]
Space-air-ground integrated networks (SAGINs) face unprecedented security challenges due to their inherent characteristics.<n>Generative AI (GAI) is a transformative approach that can safeguard SAGIN security by synthesizing data, understanding semantics, and making autonomous decisions.
arXiv Detail & Related papers (2025-08-04T01:42:57Z) - CyGATE: Game-Theoretic Cyber Attack-Defense Engine for Patch Strategy Optimization [73.13843039509386]
This paper presents CyGATE, a game-theoretic framework modeling attacker-defender interactions.<n>CyGATE frames cyber conflicts as a partially observable game (POSG) across Cyber Kill Chain stages.<n>The framework's flexible architecture enables extension to multi-agent scenarios.
arXiv Detail & Related papers (2025-08-01T09:53:06Z) - Large AI Model-Enabled Secure Communications in Low-Altitude Wireless Networks: Concepts, Perspectives and Case Study [92.15255222408636]
Low-altitude wireless networks (LAWNs) have the potential to revolutionize communications by supporting a range of applications.<n>We investigate some large artificial intelligence model (LAM)-enabled solutions for secure communications in LAWNs.<n>To demonstrate the practical benefits of LAMs for secure communications in LAWNs, we propose a novel LAM-based optimization framework.
arXiv Detail & Related papers (2025-08-01T01:53:58Z) - Hybrid LLM-Enhanced Intrusion Detection for Zero-Day Threats in IoT Networks [6.087274577167399]
This paper presents a novel approach to intrusion detection by integrating traditional signature-based methods with the contextual understanding capabilities of the GPT-2 Large Language Model (LLM)<n>We propose a hybrid IDS framework that merges the robustness of signature-based techniques with the adaptability of GPT-2-driven semantic analysis.<n> Experimental evaluations on a representative intrusion dataset demonstrate that our model enhances detection accuracy by 6.3%, reduces false positives by 9.0%, and maintains near real-time responsiveness.
arXiv Detail & Related papers (2025-07-10T04:10:03Z) - Generative AI for Vulnerability Detection in 6G Wireless Networks: Advances, Case Study, and Future Directions [7.991374874432769]
Generative AI (GAI) emerges as a transformative solution, leveraging synthetic data generation, multimodal reasoning, and adaptive learning to enhance security frameworks.<n>This paper explores the integration of GAI-powered vulnerability detection in 6G wireless networks, focusing on code auditing, protocol security, cloud-edge defenses, and hardware protection.
arXiv Detail & Related papers (2025-06-25T14:36:31Z) - Agile Orchestration at Will: An Entire Smart Service-Based Security Architecture Towards 6G [43.63515130049697]
We propose ES3A (Entire Smart Service-based Security Architecture), a novel security architecture for 6G networks.<n>Our architecture consists of three layers and three domains. It relies on a two-stage orchestration mechanism to tailor smart security strategies for customized protection in high-dynamic 6G networks.
arXiv Detail & Related papers (2025-05-29T01:05:02Z) - Tit-for-Tat: Safeguarding Large Vision-Language Models Against Jailbreak Attacks via Adversarial Defense [90.71884758066042]
Large vision-language models (LVLMs) introduce a unique vulnerability: susceptibility to malicious attacks via visual inputs.<n>We propose ESIII (Embedding Security Instructions Into Images), a novel methodology for transforming the visual space from a source of vulnerability into an active defense mechanism.
arXiv Detail & Related papers (2025-03-14T17:39:45Z) - Reasoning-Augmented Conversation for Multi-Turn Jailbreak Attacks on Large Language Models [53.580928907886324]
Reasoning-Augmented Conversation is a novel multi-turn jailbreak framework.<n>It reformulates harmful queries into benign reasoning tasks.<n>We show that RACE achieves state-of-the-art attack effectiveness in complex conversational scenarios.
arXiv Detail & Related papers (2025-02-16T09:27:44Z) - Adversarial Robustness in Two-Stage Learning-to-Defer: Algorithms and Guarantees [3.6787328174619254]
Learning-to-Defer (L2D) facilitates optimal task allocation between AI systems and decision-makers.<n>This paper conducts the first comprehensive analysis of adversarial robustness in two-stage L2D frameworks.<n>We propose SARD, a robust, convex, deferral algorithm rooted in Bayes and $(mathcalR,mathcalG)$-consistency.
arXiv Detail & Related papers (2025-02-03T03:44:35Z) - An Approach To Enhance IoT Security In 6G Networks Through Explainable AI [1.9950682531209158]
6G communication has evolved significantly, with 6G offering groundbreaking capabilities, particularly for IoT.<n>The integration of IoT into 6G presents new security challenges, expanding the attack surface due to vulnerabilities introduced by advanced technologies.<n>Our research addresses these challenges by utilizing tree-based machine learning algorithms to manage complex datasets and evaluate feature importance.
arXiv Detail & Related papers (2024-10-04T20:14:25Z) - Toward Mixture-of-Experts Enabled Trustworthy Semantic Communication for 6G Networks [82.3753728955968]
We introduce a novel Mixture-of-Experts (MoE)-based SemCom system.
This system comprises a gating network and multiple experts, each specializing in different security challenges.
The gating network adaptively selects suitable experts to counter heterogeneous attacks based on user-defined security requirements.
A case study in vehicular networks demonstrates the efficacy of the MoE-based SemCom system.
arXiv Detail & Related papers (2024-09-24T03:17:51Z) - The MESA Security Model 2.0: A Dynamic Framework for Mitigating Stealth Data Exfiltration [0.0]
Stealth Data Exfiltration is a significant cyber threat characterized by covert infiltration, extended undetectability, and unauthorized dissemination of confidential data.
Our findings reveal that conventional defense-in-depth strategies often fall short in combating these sophisticated threats.
As we navigate this complex landscape, it is crucial to anticipate potential threats and continually update our defenses.
arXiv Detail & Related papers (2024-05-17T16:14:45Z) - Large language models in 6G security: challenges and opportunities [5.073128025996496]
We focus on the security aspects of Large Language Models (LLMs) from the viewpoint of potential adversaries.
This will include the development of a comprehensive threat taxonomy, categorizing various adversary behaviors.
Also, our research will concentrate on how LLMs can be integrated into cybersecurity efforts by defense teams, also known as blue teams.
arXiv Detail & Related papers (2024-03-18T20:39:34Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content.
In this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks.
We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity.
arXiv Detail & Related papers (2024-02-21T06:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.