HyperMotion: DiT-Based Pose-Guided Human Image Animation of Complex Motions
- URL: http://arxiv.org/abs/2505.22977v1
- Date: Thu, 29 May 2025 01:30:46 GMT
- Title: HyperMotion: DiT-Based Pose-Guided Human Image Animation of Complex Motions
- Authors: Shuolin Xu, Siming Zheng, Ziyi Wang, HC Yu, Jinwei Chen, Huaqi Zhang, Bo Li, Peng-Tao Jiang,
- Abstract summary: We introduce the textbfOpen-HyperMotionX dataset and textbfHyperMotionX Bench, which provide high-quality human pose annotations and curated video clips.<n>We also propose a simple yet powerful DiT-based video generation baseline and design spatial low-frequency enhanced RoPE.<n>Our method significantly improves structural stability and appearance consistency in highly dynamic human motion sequences.
- Score: 12.46263584777151
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in diffusion models have significantly improved conditional video generation, particularly in the pose-guided human image animation task. Although existing methods are capable of generating high-fidelity and time-consistent animation sequences in regular motions and static scenes, there are still obvious limitations when facing complex human body motions (Hypermotion) that contain highly dynamic, non-standard motions, and the lack of a high-quality benchmark for evaluation of complex human motion animations. To address this challenge, we introduce the \textbf{Open-HyperMotionX Dataset} and \textbf{HyperMotionX Bench}, which provide high-quality human pose annotations and curated video clips for evaluating and improving pose-guided human image animation models under complex human motion conditions. Furthermore, we propose a simple yet powerful DiT-based video generation baseline and design spatial low-frequency enhanced RoPE, a novel module that selectively enhances low-frequency spatial feature modeling by introducing learnable frequency scaling. Our method significantly improves structural stability and appearance consistency in highly dynamic human motion sequences. Extensive experiments demonstrate the effectiveness of our dataset and proposed approach in advancing the generation quality of complex human motion image animations. Code and dataset will be made publicly available.
Related papers
- Hallo4: High-Fidelity Dynamic Portrait Animation via Direct Preference Optimization and Temporal Motion Modulation [26.597877504216196]
We introduce direct preference optimization tailored for human-centric animation.<n>Second, the proposed temporal motion modulation resolves resolution mismatches.<n>Experiments demonstrate obvious improvements in lip-audio synchronization, expression vividness, body motion coherence over baseline methods.
arXiv Detail & Related papers (2025-05-29T15:04:00Z) - EvAnimate: Event-conditioned Image-to-Video Generation for Human Animation [58.41979933166173]
EvAnimate is the first method leveraging event streams as robust and precise motion cues for conditional human image animation.<n>High-quality and temporally coherent animations are achieved through a dual-branch architecture.<n>Experiment results show EvAnimate achieves high temporal fidelity and robust performance in scenarios where traditional video-derived cues fall short.
arXiv Detail & Related papers (2025-03-24T11:05:41Z) - Deblur-Avatar: Animatable Avatars from Motion-Blurred Monocular Videos [64.10307207290039]
We introduce a novel framework for modeling high-fidelity, animatable 3D human avatars from motion-blurred monocular video inputs.<n>By explicitly modeling human motion trajectories during exposure time, we jointly optimize the trajectories and 3D Gaussians to reconstruct sharp, high-quality human avatars.
arXiv Detail & Related papers (2025-01-23T02:31:57Z) - X-Dyna: Expressive Dynamic Human Image Animation [49.896933584815926]
X-Dyna is a zero-shot, diffusion-based pipeline for animating a single human image.<n>It generates realistic, context-aware dynamics for both the subject and the surrounding environment.
arXiv Detail & Related papers (2025-01-17T08:10:53Z) - A Plug-and-Play Physical Motion Restoration Approach for In-the-Wild High-Difficulty Motions [56.709280823844374]
We introduce a mask-based motion correction module (MCM) that leverages motion context and video mask to repair flawed motions.<n>We also propose a physics-based motion transfer module (PTM), which employs a pretrain and adapt approach for motion imitation.<n>Our approach is designed as a plug-and-play module to physically refine the video motion capture results, including high-difficulty in-the-wild motions.
arXiv Detail & Related papers (2024-12-23T08:26:00Z) - Dance In the Wild: Monocular Human Animation with Neural Dynamic
Appearance Synthesis [56.550999933048075]
We propose a video based synthesis method that tackles challenges and demonstrates high quality results for in-the-wild videos.
We introduce a novel motion signature that is used to modulate the generator weights to capture dynamic appearance changes.
We evaluate our method on a set of challenging videos and show that our approach achieves state-of-the art performance both qualitatively and quantitatively.
arXiv Detail & Related papers (2021-11-10T20:18:57Z) - Render In-between: Motion Guided Video Synthesis for Action
Interpolation [53.43607872972194]
We propose a motion-guided frame-upsampling framework that is capable of producing realistic human motion and appearance.
A novel motion model is trained to inference the non-linear skeletal motion between frames by leveraging a large-scale motion-capture dataset.
Our pipeline only requires low-frame-rate videos and unpaired human motion data but does not require high-frame-rate videos for training.
arXiv Detail & Related papers (2021-11-01T15:32:51Z) - Dynamic Future Net: Diversified Human Motion Generation [31.987602940970888]
Human motion modelling is crucial in many areas such as computer graphics, vision and virtual reality.
We present Dynamic Future Net, a new deep learning model where we explicitly focuses on the intrinsic motionity of human motion dynamics.
Our model can generate a large number of high-quality motions with arbitrary duration, and visuallyincing variations in both space and time.
arXiv Detail & Related papers (2020-08-25T02:31:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.