論文の概要: A Practical Approach for Building Production-Grade Conversational Agents with Workflow Graphs
- arxiv url: http://arxiv.org/abs/2505.23006v1
- Date: Thu, 29 May 2025 02:30:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-30 18:14:07.627012
- Title: A Practical Approach for Building Production-Grade Conversational Agents with Workflow Graphs
- Title(参考訳): ワークフローグラフを用いた生産型会話エージェント構築のための実践的アプローチ
- Authors: Chiwan Park, Wonjun Jang, Daeryong Kim, Aelim Ahn, Kichang Yang, Woosung Hwang, Jihyeon Roh, Hyerin Park, Hyosun Wang, Min Seok Kim, Jihoon Kang,
- Abstract要約: 大きな言語モデル(LLM)は、さまざまなサービスドメインで大幅に改善されました。
産業環境でのSOTA(State-of-the-art)研究の適用は課題を提起する。
- 参考スコア(独自算出の注目度): 2.7905014064567344
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advancement of Large Language Models (LLMs) has led to significant improvements in various service domains, including search, recommendation, and chatbot applications. However, applying state-of-the-art (SOTA) research to industrial settings presents challenges, as it requires maintaining flexible conversational abilities while also strictly complying with service-specific constraints. This can be seen as two conflicting requirements due to the probabilistic nature of LLMs. In this paper, we propose our approach to addressing this challenge and detail the strategies we employed to overcome their inherent limitations in real-world applications. We conduct a practical case study of a conversational agent designed for the e-commerce domain, detailing our implementation workflow and optimizations. Our findings provide insights into bridging the gap between academic research and real-world application, introducing a framework for developing scalable, controllable, and reliable AI-driven agents.
- Abstract(参考訳): LLM(Large Language Models)の進歩により、検索、レコメンデーション、チャットボットアプリケーションなど、さまざまなサービスドメインが大幅に改善されている。
しかし、産業環境でのSOTA(State-of-the-art)研究の適用は、フレキシブルな会話能力の維持と、サービス固有の制約の厳格な遵守が要求されるため、課題を提起する。
これは、LLMの確率的性質のため、2つの矛盾する要件と見なすことができる。
本稿では,この課題に対処するためのアプローチを提案するとともに,現実のアプリケーションにおける本質的な限界を克服するための戦略を詳述する。
我々は,eコマースドメイン用に設計された対話エージェントの実践事例研究を行い,実装のワークフローと最適化について詳述する。
私たちの発見は、学術研究と現実世界のアプリケーションとのギャップを埋める上での洞察を与え、スケーラブルで制御可能で信頼性の高いAI駆動エージェントを開発するためのフレームワークを導入しました。
関連論文リスト
- ModelingAgent: Bridging LLMs and Mathematical Modeling for Real-World Challenges [72.19809898215857]
ModelingBenchは、様々な領域にわたる数学モデリングの競争から、現実に着想を得たオープンエンドの問題を特徴付ける新しいベンチマークである。
これらのタスクには、自然言語を形式的な数学的定式化に翻訳し、適切なツールを適用し、構造化された防御可能なレポートを生成する必要がある。
ツール使用をコーディネートするマルチエージェントフレームワークである ModelingAgent も紹介します。
論文 参考訳(メタデータ) (2025-05-21T03:33:23Z) - Why Reasoning Matters? A Survey of Advancements in Multimodal Reasoning (v1) [66.51642638034822]
推論は人間の知性の中心であり、多様なタスクにまたがる構造化された問題解決を可能にする。
大規模言語モデル(LLM)の最近の進歩は、算術、常識、記号領域における推論能力を大幅に向上させてきた。
本稿では,テキストおよびマルチモーダルLLMにおける推論手法の簡潔かつ洞察に富んだ概要について述べる。
論文 参考訳(メタデータ) (2025-04-04T04:04:56Z) - Large Language Models Post-training: Surveying Techniques from Alignment to Reasoning [185.51013463503946]
大規模言語モデル(LLM)は、自然言語処理を根本的に変革し、会話システムから科学的探索まで、さまざまな領域で欠かせないものにしている。
これらの課題は、制限された推論能力、倫理的不確実性、最適なドメイン固有のパフォーマンスといった欠点に対処するために、先進的な訓練後言語モデル(PoLM)を必要とする。
本稿では,タスク固有の精度を向上するファインチューニング,倫理的コヒーレンスと人間の嗜好との整合性を保証するアライメント,報酬設計の課題によらず多段階の推論を進める推論,統合と適応の5つのパラダイムを体系的に追跡したPoLMの総合的な調査について述べる。
論文 参考訳(メタデータ) (2025-03-08T05:41:42Z) - Conversation Routines: A Prompt Engineering Framework for Task-Oriented Dialog Systems [0.21756081703275998]
本研究では,Large Language Models (LLMs) を用いたタスク指向対話システムの開発のための,構造化されたプロンプトエンジニアリングフレームワークである Conversation Routines (CR) を紹介する。
提案したCRフレームワークは,自然言語仕様による会話エージェントシステム(CAS)の開発を可能にする。
このフレームワークの有効性を,Train Booking SystemとInteractive Ticket Copilotという2つの概念実証実装を通じて実証する。
論文 参考訳(メタデータ) (2025-01-20T17:19:02Z) - LEARN: Knowledge Adaptation from Large Language Model to Recommendation for Practical Industrial Application [54.984348122105516]
Llm-driven knowlEdge Adaptive RecommeNdation (LEARN)フレームワークは、オープンワールドの知識と協調的な知識をシナジする。
オープンワールドの知識と協調的な知識を相乗化するLlm-driven knowlEdge Adaptive RecommeNdation (LEARN) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-07T04:00:30Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adapt adjust of language model based on specific downstream task。
提案手法は,様々なバックボーンやベンチマーク上での最先端性能を実証し,最小限の忘れを伴い,フルセットおよび少数ショットのシナリオにおいて効果的な連続学習を実現する。
論文 参考訳(メタデータ) (2024-04-11T04:22:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。