Towards Privacy-Preserving Fine-Grained Visual Classification via Hierarchical Learning from Label Proportions
- URL: http://arxiv.org/abs/2505.23031v1
- Date: Thu, 29 May 2025 03:18:25 GMT
- Title: Towards Privacy-Preserving Fine-Grained Visual Classification via Hierarchical Learning from Label Proportions
- Authors: Jinyi Chang, Dongliang Chang, Lei Chen, Bingyao Yu, Zhanyu Ma,
- Abstract summary: This paper aims to enable accurate fine-grained recognition without direct access to instance labels.<n>Unlike existing LLP-based methods, our framework explicitly exploits the hierarchical nature of fine-grained datasets.
- Score: 25.974006393027228
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, Fine-Grained Visual Classification (FGVC) has achieved impressive recognition accuracy, despite minimal inter-class variations. However, existing methods heavily rely on instance-level labels, making them impractical in privacy-sensitive scenarios such as medical image analysis. This paper aims to enable accurate fine-grained recognition without direct access to instance labels. To achieve this, we leverage the Learning from Label Proportions (LLP) paradigm, which requires only bag-level labels for efficient training. Unlike existing LLP-based methods, our framework explicitly exploits the hierarchical nature of fine-grained datasets, enabling progressive feature granularity refinement and improving classification accuracy. We propose Learning from Hierarchical Fine-Grained Label Proportions (LHFGLP), a framework that incorporates Unrolled Hierarchical Fine-Grained Sparse Dictionary Learning, transforming handcrafted iterative approximation into learnable network optimization. Additionally, our proposed Hierarchical Proportion Loss provides hierarchical supervision, further enhancing classification performance. Experiments on three widely-used fine-grained datasets, structured in a bag-based manner, demonstrate that our framework consistently outperforms existing LLP-based methods. We will release our code and datasets to foster further research in privacy-preserving fine-grained classification.
Related papers
- Vocabulary-free Fine-grained Visual Recognition via Enriched Contextually Grounded Vision-Language Model [52.01031460230826]
Traditional approaches rely heavily on fixed vocabularies and closed-set classification paradigms.<n>Recent research has demonstrated that combining large language models with vision-language models (VLMs) makes open-set recognition possible.<n>We propose our training-free method, Enriched-FineR, which demonstrates state-of-the-art results in fine-grained visual recognition.
arXiv Detail & Related papers (2025-07-30T20:06:01Z) - PEPL: Precision-Enhanced Pseudo-Labeling for Fine-Grained Image Classification in Semi-Supervised Learning [3.801446153948012]
We introduce Precision-Enhanced Pseudo-Labeling(PEPL) approach for fine-grained image classification within a semi-supervised learning framework.
Our method leverages the abundance of unlabeled data by generating high-quality pseudo-labels.
We achieve state-of-the-art performance on benchmark datasets, demonstrating significant improvements over existing semi-supervised strategies.
arXiv Detail & Related papers (2024-09-05T02:32:07Z) - Pseudo-labelling meets Label Smoothing for Noisy Partial Label Learning [8.387189407144403]
We motivate weakly supervised learning as an effective learning paradigm for problems where curating perfectly annotated datasets is expensive.<n>We focus on Partial Learning (PLL), a weakly-supervised learning paradigm where each training instance is paired with a set of candidate labels.<n>We present a framework that initially assigns pseudo-labels to images by exploiting the noisy partial labels through a weighted nearest neighbour algorithm.
arXiv Detail & Related papers (2024-02-07T13:32:47Z) - A Self Supervised StyleGAN for Image Annotation and Classification with
Extremely Limited Labels [35.43549147657739]
We propose SS-StyleGAN, a self-supervised approach for image annotation and classification suitable for extremely small annotated datasets.
We show that the proposed method attains strong classification results using small labeled datasets of sizes 50 and even 10.
arXiv Detail & Related papers (2023-12-26T09:46:50Z) - TagCLIP: A Local-to-Global Framework to Enhance Open-Vocabulary
Multi-Label Classification of CLIP Without Training [29.431698321195814]
Contrastive Language-Image Pre-training (CLIP) has demonstrated impressive capabilities in open-vocabulary classification.
CLIP shows poor performance on multi-label datasets because the global feature tends to be dominated by the most prominent class.
We propose a local-to-global framework to obtain image tags.
arXiv Detail & Related papers (2023-12-20T08:15:40Z) - ProTeCt: Prompt Tuning for Taxonomic Open Set Classification [59.59442518849203]
Few-shot adaptation methods do not fare well in the taxonomic open set (TOS) setting.
We propose a prompt tuning technique that calibrates the hierarchical consistency of model predictions.
A new Prompt Tuning for Hierarchical Consistency (ProTeCt) technique is then proposed to calibrate classification across label set granularities.
arXiv Detail & Related papers (2023-06-04T02:55:25Z) - Dynamic Conceptional Contrastive Learning for Generalized Category
Discovery [76.82327473338734]
Generalized category discovery (GCD) aims to automatically cluster partially labeled data.
Unlabeled data contain instances that are not only from known categories of the labeled data but also from novel categories.
One effective way for GCD is applying self-supervised learning to learn discriminate representation for unlabeled data.
We propose a Dynamic Conceptional Contrastive Learning framework, which can effectively improve clustering accuracy.
arXiv Detail & Related papers (2023-03-30T14:04:39Z) - Exploring Structured Semantic Prior for Multi Label Recognition with
Incomplete Labels [60.675714333081466]
Multi-label recognition (MLR) with incomplete labels is very challenging.
Recent works strive to explore the image-to-label correspondence in the vision-language model, ie, CLIP, to compensate for insufficient annotations.
We advocate remedying the deficiency of label supervision for the MLR with incomplete labels by deriving a structured semantic prior.
arXiv Detail & Related papers (2023-03-23T12:39:20Z) - CHiLS: Zero-Shot Image Classification with Hierarchical Label Sets [24.868024094095983]
Open vocabulary models (e.g. CLIP) have shown strong performance on zero-shot classification.
We propose Classification with Hierarchical Label Sets (or CHiLS) for datasets with implicit semantic hierarchies.
CHiLS is simple to implement within existing zero-shot pipelines and requires no additional training cost.
arXiv Detail & Related papers (2023-02-06T03:59:15Z) - Use All The Labels: A Hierarchical Multi-Label Contrastive Learning
Framework [75.79736930414715]
We present a hierarchical multi-label representation learning framework that can leverage all available labels and preserve the hierarchical relationship between classes.
We introduce novel hierarchy preserving losses, which jointly apply a hierarchical penalty to the contrastive loss, and enforce the hierarchy constraint.
arXiv Detail & Related papers (2022-04-27T21:41:44Z) - SCARF: Self-Supervised Contrastive Learning using Random Feature
Corruption [72.35532598131176]
We propose SCARF, a technique for contrastive learning, where views are formed by corrupting a random subset of features.
We show that SCARF complements existing strategies and outperforms alternatives like autoencoders.
arXiv Detail & Related papers (2021-06-29T08:08:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.