Revisit CP Tensor Decomposition: Statistical Optimality and Fast Convergence
- URL: http://arxiv.org/abs/2505.23046v1
- Date: Thu, 29 May 2025 03:42:03 GMT
- Title: Revisit CP Tensor Decomposition: Statistical Optimality and Fast Convergence
- Authors: Runshi Tang, Julien Chhor, Olga Klopp, Anru R. Zhang,
- Abstract summary: We revisit Canonical Polyadic (CP) tensor decomposition from a statistical perspective.<n>We provide a comprehensive theoretical analysis of Alternating Least Squares (ALS) under a signal-plus-noise model.
- Score: 6.724750970258851
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Canonical Polyadic (CP) tensor decomposition is a fundamental technique for analyzing high-dimensional tensor data. While the Alternating Least Squares (ALS) algorithm is widely used for computing CP decomposition due to its simplicity and empirical success, its theoretical foundation, particularly regarding statistical optimality and convergence behavior, remain underdeveloped, especially in noisy, non-orthogonal, and higher-rank settings. In this work, we revisit CP tensor decomposition from a statistical perspective and provide a comprehensive theoretical analysis of ALS under a signal-plus-noise model. We establish non-asymptotic, minimax-optimal error bounds for tensors of general order, dimensions, and rank, assuming suitable initialization. To enable such initialization, we propose Tucker-based Approximation with Simultaneous Diagonalization (TASD), a robust method that improves stability and accuracy in noisy regimes. Combined with ALS, TASD yields a statistically consistent estimator. We further analyze the convergence dynamics of ALS, identifying a two-phase pattern-initial quadratic convergence followed by linear refinement. We further show that in the rank-one setting, ALS with an appropriately chosen initialization attains optimal error within just one or two iterations.
Related papers
- Outlier-aware Tensor Robust Principal Component Analysis with Self-guided Data Augmentation [21.981038455329013]
We propose a self-guided data augmentation approach that employs adaptive weighting to suppress outlier influence.<n>We show the improvements in both accuracy and computational efficiency compared to state-of-the-art methods.
arXiv Detail & Related papers (2025-04-25T13:03:35Z) - A Random Matrix Approach to Low-Multilinear-Rank Tensor Approximation [24.558241146742205]
We characterize the large-dimensional spectral behavior of the unfoldings of the data tensor and exhibit relevant signal-to-noise ratios governing the detectability of the principal directions of the signal.<n>Results allow to accurately predict the reconstruction performance of truncated multilinear SVD (MLSVD) in the non-trivial regime.
arXiv Detail & Related papers (2024-02-05T16:38:30Z) - NAG-GS: Semi-Implicit, Accelerated and Robust Stochastic Optimizer [45.47667026025716]
We propose a novel, robust and accelerated iteration that relies on two key elements.
The convergence and stability of the obtained method, referred to as NAG-GS, are first studied extensively.
We show that NAG-arity is competitive with state-the-art methods such as momentum SGD with weight decay and AdamW for the training of machine learning models.
arXiv Detail & Related papers (2022-09-29T16:54:53Z) - Exploring the Algorithm-Dependent Generalization of AUPRC Optimization
with List Stability [107.65337427333064]
optimization of the Area Under the Precision-Recall Curve (AUPRC) is a crucial problem for machine learning.
In this work, we present the first trial in the single-dependent generalization of AUPRC optimization.
Experiments on three image retrieval datasets on speak to the effectiveness and soundness of our framework.
arXiv Detail & Related papers (2022-09-27T09:06:37Z) - Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector
Problems [98.34292831923335]
Motivated by the problem of online correlation analysis, we propose the emphStochastic Scaled-Gradient Descent (SSD) algorithm.
We bring these ideas together in an application to online correlation analysis, deriving for the first time an optimal one-time-scale algorithm with an explicit rate of local convergence to normality.
arXiv Detail & Related papers (2021-12-29T18:46:52Z) - Optimizing Information-theoretical Generalization Bounds via Anisotropic
Noise in SGLD [73.55632827932101]
We optimize the information-theoretical generalization bound by manipulating the noise structure in SGLD.
We prove that with constraint to guarantee low empirical risk, the optimal noise covariance is the square root of the expected gradient covariance.
arXiv Detail & Related papers (2021-10-26T15:02:27Z) - Tensor Principal Component Analysis in High Dimensional CP Models [3.553493344868413]
We propose new algorithms for tensor CP decomposition with theoretical guarantees under mild incoherence conditions.
The composite PCA applies the principal component or singular value decompositions twice, first to a matrix unfolding of the tensor data to obtain singular vectors and then to the matrix folding of the singular vectors obtained in the first step.
We show that our implementations on synthetic data demonstrate significant practical superiority of our approach over existing methods.
arXiv Detail & Related papers (2021-08-10T03:24:32Z) - On the Convergence of Stochastic Extragradient for Bilinear Games with
Restarted Iteration Averaging [96.13485146617322]
We present an analysis of the ExtraGradient (SEG) method with constant step size, and present variations of the method that yield favorable convergence.
We prove that when augmented with averaging, SEG provably converges to the Nash equilibrium, and such a rate is provably accelerated by incorporating a scheduled restarting procedure.
arXiv Detail & Related papers (2021-06-30T17:51:36Z) - Scaling and Scalability: Provable Nonconvex Low-Rank Tensor Estimation
from Incomplete Measurements [30.395874385570007]
A fundamental task is to faithfully recover tensors from highly incomplete measurements.
We develop an algorithm to directly recover the tensor factors in the Tucker decomposition.
We show that it provably converges at a linear independent rate of the ground truth tensor for two canonical problems.
arXiv Detail & Related papers (2021-04-29T17:44:49Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z) - On the Convergence Rate of Projected Gradient Descent for a
Back-Projection based Objective [58.33065918353532]
We consider a back-projection based fidelity term as an alternative to the common least squares (LS)
We show that using the BP term, rather than the LS term, requires fewer iterations of optimization algorithms.
arXiv Detail & Related papers (2020-05-03T00:58:23Z) - An Optimal Statistical and Computational Framework for Generalized
Tensor Estimation [10.899518267165666]
This paper describes a flexible framework for low-rank tensor estimation problems.
It includes many important instances from applications in computational imaging, genomics, and network analysis.
arXiv Detail & Related papers (2020-02-26T01:54:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.