ProDiff: Prototype-Guided Diffusion for Minimal Information Trajectory Imputation
- URL: http://arxiv.org/abs/2505.23048v1
- Date: Thu, 29 May 2025 03:43:16 GMT
- Title: ProDiff: Prototype-Guided Diffusion for Minimal Information Trajectory Imputation
- Authors: Tianci Bu, Le Zhou, Wenchuan Yang, Jianhong Mou, Kang Yang, Suoyi Tan, Feng Yao, Jingyuan Wang, Xin Lu,
- Abstract summary: Existing imputation methods rely on sparse trajectory or travel information, such as velocity, to infer missing points.<n>We propose ProDiff, a trajectory imputation framework that uses only two endpoints as minimal information.<n>ProDiff outperforms state-of-the-art methods, improving accuracy 6.28% on FourSquare and 2.52% on WuXi.
- Score: 20.913544994708477
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trajectory data is crucial for various applications but often suffers from incompleteness due to device limitations and diverse collection scenarios. Existing imputation methods rely on sparse trajectory or travel information, such as velocity, to infer missing points. However, these approaches assume that sparse trajectories retain essential behavioral patterns, which place significant demands on data acquisition and overlook the potential of large-scale human trajectory embeddings. To address this, we propose ProDiff, a trajectory imputation framework that uses only two endpoints as minimal information. It integrates prototype learning to embed human movement patterns and a denoising diffusion probabilistic model for robust spatiotemporal reconstruction. Joint training with a tailored loss function ensures effective imputation. ProDiff outperforms state-of-the-art methods, improving accuracy by 6.28\% on FourSquare and 2.52\% on WuXi. Further analysis shows a 0.927 correlation between generated and real trajectories, demonstrating the effectiveness of our approach.
Related papers
- RealTraj: Towards Real-World Pedestrian Trajectory Forecasting [10.332817296500533]
We propose a novel framework, RealTraj, that enhances the real-world applicability of trajectory forecasting.<n>We present Det2TrajFormer, a model that remains invariant to tracking noise by using past detections as inputs.<n>Unlike previous trajectory forecasting methods, our approach fine-tunes the model using only ground-truth detections, reducing the need for costly person ID annotations.
arXiv Detail & Related papers (2024-11-26T12:35:26Z) - Data-driven Probabilistic Trajectory Learning with High Temporal Resolution in Terminal Airspace [9.688760969026305]
We propose a data-driven learning framework, that leverages the predictive and feature extraction capabilities of the mixture models and seq2seq-based neural networks.
After training with this framework, the learned model can improve long-step prediction accuracy significantly.
The accuracy and effectiveness of the approach are evaluated by comparing the predicted trajectories with the ground truth.
arXiv Detail & Related papers (2024-09-25T21:08:25Z) - Stochastic Amortization: A Unified Approach to Accelerate Feature and Data Attribution [62.71425232332837]
We show that training amortized models with noisy labels is inexpensive and surprisingly effective.
This approach significantly accelerates several feature attribution and data valuation methods, often yielding an order of magnitude speedup over existing approaches.
arXiv Detail & Related papers (2024-01-29T03:42:37Z) - Improving Transferability for Cross-domain Trajectory Prediction via
Neural Stochastic Differential Equation [41.09061877498741]
discrepancies exist among datasets due to external factors and data acquisition strategies.
The proficient performance of models trained on large-scale datasets has limited transferability on other small-size datasets.
We propose a method based on continuous and utilization of Neural Differential Equations (NSDE) for alleviating discrepancies.
The effectiveness of our method is validated against state-of-the-art trajectory prediction models on the popular benchmark datasets: nuScenes, Argoverse, Lyft, INTERACTION, and Open Motion dataset.
arXiv Detail & Related papers (2023-12-26T06:50:29Z) - Uncovering Drift in Textual Data: An Unsupervised Method for Detecting
and Mitigating Drift in Machine Learning Models [9.035254826664273]
Drift in machine learning refers to the phenomenon where the statistical properties of data or context, in which the model operates, change over time leading to a decrease in its performance.
In our proposed unsupervised drift detection method, we follow a two step process. Our first step involves encoding a sample of production data as the target distribution, and the model training data as the reference distribution.
Our method also identifies the subset of production data that is the root cause of the drift.
The models retrained using these identified high drift samples show improved performance on online customer experience quality metrics.
arXiv Detail & Related papers (2023-09-07T16:45:42Z) - Structural Pruning for Diffusion Models [65.02607075556742]
We present Diff-Pruning, an efficient compression method tailored for learning lightweight diffusion models from pre-existing ones.
Our empirical assessment, undertaken across several datasets highlights two primary benefits of our proposed method.
arXiv Detail & Related papers (2023-05-18T12:38:21Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Minimizing the Accumulated Trajectory Error to Improve Dataset
Distillation [151.70234052015948]
We propose a novel approach that encourages the optimization algorithm to seek a flat trajectory.
We show that the weights trained on synthetic data are robust against the accumulated errors perturbations with the regularization towards the flat trajectory.
Our method, called Flat Trajectory Distillation (FTD), is shown to boost the performance of gradient-matching methods by up to 4.7%.
arXiv Detail & Related papers (2022-11-20T15:49:11Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
We introduce the importance of guided gradient descent (IGSGD) method to train inference from inputs containing missing values without imputation.
We employ reinforcement learning (RL) to adjust the gradients used to train the models via back-propagation.
Our imputation-free predictions outperform the traditional two-step imputation-based predictions using state-of-the-art imputation methods.
arXiv Detail & Related papers (2021-07-05T12:44:39Z) - Unsupervised Noisy Tracklet Person Re-identification [100.85530419892333]
We present a novel selective tracklet learning (STL) approach that can train discriminative person re-id models from unlabelled tracklet data.
This avoids the tedious and costly process of exhaustively labelling person image/tracklet true matching pairs across camera views.
Our method is particularly more robust against arbitrary noisy data of raw tracklets therefore scalable to learning discriminative models from unconstrained tracking data.
arXiv Detail & Related papers (2021-01-16T07:31:00Z) - Mobility Inference on Long-Tailed Sparse Trajectory [2.4444287331956898]
We propose a single trajectory inference algorithm that utilizes a generic long-tailed sparsity pattern in the large-scale trajectory data.
The algorithm guarantees a 100% precision in the stay/travel inference with a provable lower-bound in the recall.
Evaluations with three trajectory data sets of 40 million urban users validate the performance guarantees of the proposed inference algorithm.
arXiv Detail & Related papers (2020-01-21T16:32:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.