Mobility Inference on Long-Tailed Sparse Trajectory
- URL: http://arxiv.org/abs/2001.07636v1
- Date: Tue, 21 Jan 2020 16:32:38 GMT
- Title: Mobility Inference on Long-Tailed Sparse Trajectory
- Authors: Lei Shi
- Abstract summary: We propose a single trajectory inference algorithm that utilizes a generic long-tailed sparsity pattern in the large-scale trajectory data.
The algorithm guarantees a 100% precision in the stay/travel inference with a provable lower-bound in the recall.
Evaluations with three trajectory data sets of 40 million urban users validate the performance guarantees of the proposed inference algorithm.
- Score: 2.4444287331956898
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Analyzing the urban trajectory in cities has become an important topic in
data mining. How can we model the human mobility consisting of stay and travel
from the raw trajectory data? How can we infer such a mobility model from the
single trajectory information? How can we further generalize the mobility
inference to accommodate the real-world trajectory data that is sparsely
sampled over time?
In this paper, based on formal and rigid definitions of the stay/travel
mobility, we propose a single trajectory inference algorithm that utilizes a
generic long-tailed sparsity pattern in the large-scale trajectory data. The
algorithm guarantees a 100\% precision in the stay/travel inference with a
provable lower-bound in the recall. Furthermore, we introduce an
encoder-decoder learning architecture that admits multiple trajectories as
inputs. The architecture is optimized for the mobility inference problem
through customized embedding and learning mechanism. Evaluations with three
trajectory data sets of 40 million urban users validate the performance
guarantees of the proposed inference algorithm and demonstrate the superiority
of our deep learning model, in comparison to well-known sequence learning
methods. On extremely sparse trajectories, the deep learning model achieves a
2$\times$ overall accuracy improvement from the single trajectory inference
algorithm, through proven scalability and generalizability to large-scale
versatile training data.
Related papers
- OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
We present a framework to simultaneously predict occupied locations and classes using a set of learnable queries.
OPUS incorporates a suite of non-trivial strategies to enhance model performance.
Our lightest model achieves superior RayIoU on the Occ3D-nuScenes dataset at near 2x FPS, while our heaviest model surpasses previous best results by 6.1 RayIoU.
arXiv Detail & Related papers (2024-09-14T07:44:22Z) - Deep Learning for Trajectory Data Management and Mining: A Survey and Beyond [58.63558696061679]
Trajectory computing is crucial in various practical applications such as location services, urban traffic, and public safety.
We present a review of development and recent advances in deep learning for trajectory computing (DL4Traj)
Notably, we encapsulate recent advancements in Large Language Models (LLMs) that hold potential to augment trajectory computing.
arXiv Detail & Related papers (2024-03-21T05:57:27Z) - Towards A Foundation Model For Trajectory Intelligence [0.0]
We present the results of training a large trajectory model using real-world user check-in data.
Our approach follows a pre-train and fine-tune paradigm, where a base model is pre-trained via masked trajectory modeling.
Our empirical analysis utilizes a comprehensive dataset of over 2 billion check-ins generated by more than 6 million users.
arXiv Detail & Related papers (2023-11-30T00:34:09Z) - DTC: Deep Tracking Control [16.2850135844455]
We propose a hybrid control architecture that combines the advantages of both worlds to achieve greater robustness, foot-placement accuracy, and terrain generalization.
A deep neural network policy is trained in simulation, aiming to track the optimized footholds.
We demonstrate superior robustness in the presence of slippery or deformable ground when compared to model-based counterparts.
arXiv Detail & Related papers (2023-09-27T07:57:37Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - One-Pass Learning via Bridging Orthogonal Gradient Descent and Recursive
Least-Squares [8.443742714362521]
We develop an algorithm for one-pass learning which seeks to perfectly fit every new datapoint while changing the parameters in a direction that causes the least change to the predictions on previous datapoints.
Our algorithm uses the memory efficiently by exploiting the structure of the streaming data via an incremental principal component analysis (IPCA)
Our experiments show the effectiveness of the proposed method compared to the baselines.
arXiv Detail & Related papers (2022-07-28T02:01:31Z) - DouFu: A Double Fusion Joint Learning Method For Driving Trajectory
Representation [13.321587117066166]
We propose a novel multimodal fusion model, DouFu, for trajectory representation joint learning.
We first design movement, route, and global features generated from the trajectory data and urban functional zones.
With the global semantic feature, DouFu produces a comprehensive embedding for each trajectory.
arXiv Detail & Related papers (2022-05-05T07:43:35Z) - PreTraM: Self-Supervised Pre-training via Connecting Trajectory and Map [58.53373202647576]
We propose PreTraM, a self-supervised pre-training scheme for trajectory forecasting.
It consists of two parts: 1) Trajectory-Map Contrastive Learning, where we project trajectories and maps to a shared embedding space with cross-modal contrastive learning, and 2) Map Contrastive Learning, where we enhance map representation with contrastive learning on large quantities of HD-maps.
On top of popular baselines such as AgentFormer and Trajectron++, PreTraM boosts their performance by 5.5% and 6.9% relatively in FDE-10 on the challenging nuScenes dataset.
arXiv Detail & Related papers (2022-04-21T23:01:21Z) - Tracking Performance of Online Stochastic Learners [57.14673504239551]
Online algorithms are popular in large-scale learning settings due to their ability to compute updates on the fly, without the need to store and process data in large batches.
When a constant step-size is used, these algorithms also have the ability to adapt to drifts in problem parameters, such as data or model properties, and track the optimal solution with reasonable accuracy.
We establish a link between steady-state performance derived under stationarity assumptions and the tracking performance of online learners under random walk models.
arXiv Detail & Related papers (2020-04-04T14:16:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.