Learning to Search for Vehicle Routing with Multiple Time Windows
- URL: http://arxiv.org/abs/2505.23098v1
- Date: Thu, 29 May 2025 05:03:28 GMT
- Title: Learning to Search for Vehicle Routing with Multiple Time Windows
- Authors: Kuan Xu, Zhiguang Cao, Chenlong Zheng, Linong Liu,
- Abstract summary: We propose a reinforcement learning-based adaptive variable neighborhood search (RL-AVNS)<n>Our method integrates a reinforcement learning framework to dynamically select neighborhood operators based on real-time solution states and learned experience.
- Score: 13.91760960564074
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, we propose a reinforcement learning-based adaptive variable neighborhood search (RL-AVNS) method designed for effectively solving the Vehicle Routing Problem with Multiple Time Windows (VRPMTW). Unlike traditional adaptive approaches that rely solely on historical operator performance, our method integrates a reinforcement learning framework to dynamically select neighborhood operators based on real-time solution states and learned experience. We introduce a fitness metric that quantifies customers' temporal flexibility to improve the shaking phase, and employ a transformer-based neural policy network to intelligently guide operator selection during the local search. Extensive computational experiments are conducted on realistic scenarios derived from the replenishment of unmanned vending machines, characterized by multiple clustered replenishment windows. Results demonstrate that RL-AVNS significantly outperforms traditional variable neighborhood search (VNS), adaptive VNS (AVNS), and state-of-the-art learning-based heuristics, achieving substantial improvements in solution quality and computational efficiency across various instance scales and time window complexities. Particularly notable is the algorithm's capability to generalize effectively to problem instances not encountered during training, underscoring its practical utility for complex logistics scenarios.
Related papers
- Speeding up Local Optimization in Vehicle Routing with Tensor-based GPU Acceleration [23.87172157992149]
We introduce an original tensor-based GPU acceleration method to speed up the commonly used local search operators in vehicle routing.<n>Its low-coupling architecture, with intensive computations completely offloaded to the GPU, ensures seamless integration in various local search-based algorithms and frameworks.
arXiv Detail & Related papers (2025-06-20T07:40:47Z) - Accelerating Vehicle Routing via AI-Initialized Genetic Algorithms [55.78505925402658]
Vehicle Routing Problems (VRP) are an extension of the Traveling Salesperson Problem and are a fundamental NP-hard challenge in Evolutionary optimization.<n>We introduce a novel optimization framework that uses a reinforcement learning agent - trained on prior instances - to quickly generate initial solutions, which are then further optimized by genetic algorithms.<n>For example, EARLI handles vehicle routing with 500 locations within 1s, 10x faster than current solvers for the same solution quality, enabling applications like real-time and interactive routing.
arXiv Detail & Related papers (2025-04-08T15:21:01Z) - Task Offloading in Vehicular Edge Computing using Deep Reinforcement Learning: A Survey [9.21746609806009]
We explore the potential of Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL) frameworks to optimize computational offloading through adaptive, real-time decision-making.<n>The paper focuses on key aspects such as standardized learning models, optimized reward structures, and collaborative multi-agent systems, aiming to advance the understanding and application of DRL in vehicular networks.
arXiv Detail & Related papers (2025-02-10T19:02:20Z) - Switchable Decision: Dynamic Neural Generation Networks [98.61113699324429]
We propose a switchable decision to accelerate inference by dynamically assigning resources for each data instance.
Our method benefits from less cost during inference while keeping the same accuracy.
arXiv Detail & Related papers (2024-05-07T17:44:54Z) - A Reinforcement Learning Approach for Dynamic Rebalancing in
Bike-Sharing System [11.237099288412558]
Bike-Sharing Systems provide eco-friendly urban mobility, contributing to the alleviation of traffic congestion and healthier lifestyles.
Devising effective rebalancing strategies using vehicles to redistribute bikes among stations is therefore of uttermost importance for operators.
This paper introduces atemporal reinforcement learning algorithm for the dynamic rebalancing problem with multiple vehicles.
arXiv Detail & Related papers (2024-02-05T23:46:42Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - Actively Learning Costly Reward Functions for Reinforcement Learning [56.34005280792013]
We show that it is possible to train agents in complex real-world environments orders of magnitudes faster.
By enabling the application of reinforcement learning methods to new domains, we show that we can find interesting and non-trivial solutions.
arXiv Detail & Related papers (2022-11-23T19:17:20Z) - Accelerated Policy Learning with Parallel Differentiable Simulation [59.665651562534755]
We present a differentiable simulator and a new policy learning algorithm (SHAC)
Our algorithm alleviates problems with local minima through a smooth critic function.
We show substantial improvements in sample efficiency and wall-clock time over state-of-the-art RL and differentiable simulation-based algorithms.
arXiv Detail & Related papers (2022-04-14T17:46:26Z) - Fast Approximate Solutions using Reinforcement Learning for Dynamic
Capacitated Vehicle Routing with Time Windows [3.5232085374661284]
This paper develops an inherently parallelised, fast, approximate learning-based solution to the generic class of Capacitated Vehicle Routing with Time Windows and Dynamic Routing (CVRP-TWDR)
Considering vehicles in a fleet as decentralised agents, we postulate that using reinforcement learning (RL) based adaptation is a key enabler for real-time route formation in a dynamic environment.
arXiv Detail & Related papers (2021-02-24T06:30:16Z) - Reinforcement Learning for Datacenter Congestion Control [50.225885814524304]
Successful congestion control algorithms can dramatically improve latency and overall network throughput.
Until today, no such learning-based algorithms have shown practical potential in this domain.
We devise an RL-based algorithm with the aim of generalizing to different configurations of real-world datacenter networks.
We show that this scheme outperforms alternative popular RL approaches, and generalizes to scenarios that were not seen during training.
arXiv Detail & Related papers (2021-02-18T13:49:28Z) - Learning Vehicle Routing Problems using Policy Optimisation [4.093722933440819]
State-of-the-art approaches learn a policy using reinforcement learning, and the learnt policy acts as a pseudo solver.
These approaches have demonstrated good performance in some cases, but given the large search space typical of routing problem, they can converge too quickly to poor policy.
We propose entropy regularised reinforcement learning (ERRL) that supports exploration by providing more policies.
arXiv Detail & Related papers (2020-12-24T14:18:56Z) - Multi-Vehicle Routing Problems with Soft Time Windows: A Multi-Agent
Reinforcement Learning Approach [9.717648122961483]
Multi-vehicle routing problem with soft time windows (MVRPSTW) is an indispensable constituent in urban logistics systems.
Traditional methods incur the dilemma between computational efficiency and solution quality.
We propose a novel reinforcement learning algorithm called the Multi-Agent Attention Model that can solve routing problem instantly benefit from lengthy offline training.
arXiv Detail & Related papers (2020-02-13T14:26:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.