Fast Approximate Solutions using Reinforcement Learning for Dynamic
Capacitated Vehicle Routing with Time Windows
- URL: http://arxiv.org/abs/2102.12088v1
- Date: Wed, 24 Feb 2021 06:30:16 GMT
- Title: Fast Approximate Solutions using Reinforcement Learning for Dynamic
Capacitated Vehicle Routing with Time Windows
- Authors: Nazneen N Sultana, Vinita Baniwal, Ansuma Basumatary, Piyush Mittal,
Supratim Ghosh, Harshad Khadilkar
- Abstract summary: This paper develops an inherently parallelised, fast, approximate learning-based solution to the generic class of Capacitated Vehicle Routing with Time Windows and Dynamic Routing (CVRP-TWDR)
Considering vehicles in a fleet as decentralised agents, we postulate that using reinforcement learning (RL) based adaptation is a key enabler for real-time route formation in a dynamic environment.
- Score: 3.5232085374661284
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper develops an inherently parallelised, fast, approximate
learning-based solution to the generic class of Capacitated Vehicle Routing
with Time Windows and Dynamic Routing (CVRP-TWDR). Considering vehicles in a
fleet as decentralised agents, we postulate that using reinforcement learning
(RL) based adaptation is a key enabler for real-time route formation in a
dynamic environment. The methodology allows each agent (vehicle) to
independently evaluate the value of serving each customer, and uses a
centralised allocation heuristic to finalise the allocations based on the
generated values. We show that the solutions produced by this method on
standard datasets are significantly faster than exact formulations and
state-of-the-art meta-heuristics, while being reasonably close to optimal in
terms of solution quality. We describe experiments in both the static case
(when all customer demands and time windows are known in advance) as well as
the dynamic case (where customers can `pop up' at any time during execution).
The results with a single trained model on large, out-of-distribution test data
demonstrate the scalability and flexibility of the proposed approach.
Related papers
- Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
We propose a differentiable simulator and design an analytic policy gradients (APG) approach to training AV controllers.
Our proposed framework brings the differentiable simulator into an end-to-end training loop, where gradients of environment dynamics serve as a useful prior to help the agent learn a more grounded policy.
We find significant improvements in performance and robustness to noise in the dynamics, as well as overall more intuitive human-like handling.
arXiv Detail & Related papers (2024-09-12T11:50:06Z) - Switchable Decision: Dynamic Neural Generation Networks [98.61113699324429]
We propose a switchable decision to accelerate inference by dynamically assigning resources for each data instance.
Our method benefits from less cost during inference while keeping the same accuracy.
arXiv Detail & Related papers (2024-05-07T17:44:54Z) - Spatial-temporal-demand clustering for solving large-scale vehicle
routing problems with time windows [0.0]
We propose a decompose-route-improve (DRI) framework that groups customers using clustering.
Its similarity metric incorporates customers' spatial, temporal, and demand data.
We apply pruned local search (LS) between solved subproblems to improve the overall solution.
arXiv Detail & Related papers (2024-01-20T06:06:01Z) - End-to-end Lidar-Driven Reinforcement Learning for Autonomous Racing [0.0]
Reinforcement Learning (RL) has emerged as a transformative approach in the domains of automation and robotics.
This study develops and trains an RL agent to navigate a racing environment solely using feedforward raw lidar and velocity data.
The agent's performance is then experimentally evaluated in a real-world racing scenario.
arXiv Detail & Related papers (2023-09-01T07:03:05Z) - Scalable Vehicle Re-Identification via Self-Supervision [66.2562538902156]
Vehicle Re-Identification is one of the key elements in city-scale vehicle analytics systems.
Many state-of-the-art solutions for vehicle re-id mostly focus on improving the accuracy on existing re-id benchmarks and often ignore computational complexity.
We propose a simple yet effective hybrid solution empowered by self-supervised training which only uses a single network during inference time.
arXiv Detail & Related papers (2022-05-16T12:14:42Z) - Value Function is All You Need: A Unified Learning Framework for Ride
Hailing Platforms [57.21078336887961]
Large ride-hailing platforms, such as DiDi, Uber and Lyft, connect tens of thousands of vehicles in a city to millions of ride demands throughout the day.
We propose a unified value-based dynamic learning framework (V1D3) for tackling both tasks.
arXiv Detail & Related papers (2021-05-18T19:22:24Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - AdaPool: A Diurnal-Adaptive Fleet Management Framework using Model-Free
Deep Reinforcement Learning and Change Point Detection [34.77250498401055]
This paper introduces an adaptive model-free deep reinforcement approach that can recognize and adapt to the diurnal patterns in the ride-sharing environment with car-pooling.
In addition to the adaptation logic in dispatching, this paper also proposes a dynamic, demand-aware vehicle-passenger matching and route planning framework.
arXiv Detail & Related papers (2021-04-01T02:14:01Z) - Real-time End-to-End Federated Learning: An Automotive Case Study [16.79939549201032]
We introduce an approach to real-time end-to-end Federated Learning combined with a novel asynchronous model aggregation protocol.
Our results show that asynchronous Federated Learning can significantly improve the prediction performance of local edge models and reach the same accuracy level as the centralized machine learning method.
arXiv Detail & Related papers (2021-03-22T14:16:16Z) - Real-world Ride-hailing Vehicle Repositioning using Deep Reinforcement
Learning [52.2663102239029]
We present a new practical framework based on deep reinforcement learning and decision-time planning for real-world vehicle on idle-hailing platforms.
Our approach learns ride-based state-value function using a batch training algorithm with deep value.
We benchmark our algorithm with baselines in a ride-hailing simulation environment to demonstrate its superiority in improving income efficiency.
arXiv Detail & Related papers (2021-03-08T05:34:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.