TrackVLA: Embodied Visual Tracking in the Wild
- URL: http://arxiv.org/abs/2505.23189v1
- Date: Thu, 29 May 2025 07:28:09 GMT
- Title: TrackVLA: Embodied Visual Tracking in the Wild
- Authors: Shaoan Wang, Jiazhao Zhang, Minghan Li, Jiahang Liu, Anqi Li, Kui Wu, Fangwei Zhong, Junzhi Yu, Zhizheng Zhang, He Wang,
- Abstract summary: Embodied visual tracking is a fundamental skill in Embodied AI, enabling an agent to follow a specific target in dynamic environments using only egocentric vision.<n>Existing approaches typically address this challenge through a modular separation of recognition and planning.<n>We propose TrackVLA, a Vision-Language-Action model that learns the synergy between object recognition and trajectory planning.
- Score: 34.03604806748204
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Embodied visual tracking is a fundamental skill in Embodied AI, enabling an agent to follow a specific target in dynamic environments using only egocentric vision. This task is inherently challenging as it requires both accurate target recognition and effective trajectory planning under conditions of severe occlusion and high scene dynamics. Existing approaches typically address this challenge through a modular separation of recognition and planning. In this work, we propose TrackVLA, a Vision-Language-Action (VLA) model that learns the synergy between object recognition and trajectory planning. Leveraging a shared LLM backbone, we employ a language modeling head for recognition and an anchor-based diffusion model for trajectory planning. To train TrackVLA, we construct an Embodied Visual Tracking Benchmark (EVT-Bench) and collect diverse difficulty levels of recognition samples, resulting in a dataset of 1.7 million samples. Through extensive experiments in both synthetic and real-world environments, TrackVLA demonstrates SOTA performance and strong generalizability. It significantly outperforms existing methods on public benchmarks in a zero-shot manner while remaining robust to high dynamics and occlusion in real-world scenarios at 10 FPS inference speed. Our project page is: https://pku-epic.github.io/TrackVLA-web.
Related papers
- From Sight to Insight: Unleashing Eye-Tracking in Weakly Supervised Video Salient Object Detection [60.11169426478452]
This paper aims to introduce fixation information to assist the detection of salient objects under weak supervision.<n>We propose a Position and Semantic Embedding (PSE) module to provide location and semantic guidance during the feature learning process.<n>An Intra-Inter Mixed Contrastive (MCII) model improves thetemporal modeling capabilities under weak supervision.
arXiv Detail & Related papers (2025-06-30T05:01:40Z) - SemNav: A Model-Based Planner for Zero-Shot Object Goal Navigation Using Vision-Foundation Models [10.671262416557704]
Vision Foundation Models (VFMs) offer powerful capabilities for visual understanding and reasoning.<n>We present a zero-shot object goal navigation framework that integrates the perceptual strength of VFMs with a model-based planner.<n>We evaluate our approach on the HM3D dataset using the Habitat simulator and demonstrate that our method achieves state-of-the-art performance.
arXiv Detail & Related papers (2025-06-04T03:04:54Z) - Hierarchical Instruction-aware Embodied Visual Tracking [35.73851196966425]
User-Centric Embodied Visual Tracking (UC-EVT) presents a novel challenge for reinforcement learning-based models.<n>We propose textbf Instruction-aware Embodied Visual Tracking (HIEVT) agent, which bridges instruction comprehension and action generation using textitspatial goals as intermediaries.
arXiv Detail & Related papers (2025-05-27T04:36:26Z) - Learning Occlusion-Robust Vision Transformers for Real-Time UAV Tracking [11.146155422858824]
Single-stream architectures using Vision Transformer (ViT) backbones show great potential for real-time UAV tracking.<n>We propose to learn Occlusion-Robust Representations (ORR) based on ViTs for UAV tracking.<n>We also propose an Adaptive Feature-Based Knowledge Distillation (AFKD) method to create a more compact tracker.
arXiv Detail & Related papers (2025-04-12T14:06:50Z) - TraceVLA: Visual Trace Prompting Enhances Spatial-Temporal Awareness for Generalist Robotic Policies [95.30717188630432]
We introduce visual trace prompting to facilitate VLA models' spatial-temporal awareness for action prediction.<n>We develop a new TraceVLA model by finetuning OpenVLA on our own collected dataset of 150K robot manipulation trajectories.<n>We present a compact VLA model based on 4B Phi-3-Vision, pretrained on the Open-X-Embodiment and finetuned on our dataset.
arXiv Detail & Related papers (2024-12-13T18:40:51Z) - A Cross-Scene Benchmark for Open-World Drone Active Tracking [54.235808061746525]
Drone Visual Active Tracking aims to autonomously follow a target object by controlling the motion system based on visual observations.<n>We propose a unified cross-scene cross-domain benchmark for open-world drone active tracking called DAT.<n>We also propose a reinforcement learning-based drone tracking method called R-VAT.
arXiv Detail & Related papers (2024-12-01T09:37:46Z) - Beyond Visual Cues: Synchronously Exploring Target-Centric Semantics for
Vision-Language Tracking [3.416427651955299]
Single object tracking aims to locate one specific target in video sequences, given its initial state. Vision-Language (VL) tracking has emerged as a promising approach.
We present a novel tracker that progressively explores target-centric semantics for VL tracking.
arXiv Detail & Related papers (2023-11-28T02:28:12Z) - Towards Unified Token Learning for Vision-Language Tracking [65.96561538356315]
We present a vision-language (VL) tracking pipeline, termed textbfMMTrack, which casts VL tracking as a token generation task.
Our proposed framework serializes language description and bounding box into a sequence of discrete tokens.
In this new design paradigm, all token queries are required to perceive the desired target and directly predict spatial coordinates of the target.
arXiv Detail & Related papers (2023-08-27T13:17:34Z) - Robust Visual Object Tracking with Two-Stream Residual Convolutional
Networks [62.836429958476735]
We propose a Two-Stream Residual Convolutional Network (TS-RCN) for visual tracking.
Our TS-RCN can be integrated with existing deep learning based visual trackers.
To further improve the tracking performance, we adopt a "wider" residual network ResNeXt as its feature extraction backbone.
arXiv Detail & Related papers (2020-05-13T19:05:42Z) - Counterfactual Vision-and-Language Navigation via Adversarial Path Sampling [65.99956848461915]
Vision-and-Language Navigation (VLN) is a task where agents must decide how to move through a 3D environment to reach a goal.<n>One of the problems of the VLN task is data scarcity since it is difficult to collect enough navigation paths with human-annotated instructions for interactive environments.<n>We propose an adversarial-driven counterfactual reasoning model that can consider effective conditions instead of low-quality augmented data.
arXiv Detail & Related papers (2019-11-17T18:02:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.