SemNav: A Model-Based Planner for Zero-Shot Object Goal Navigation Using Vision-Foundation Models
- URL: http://arxiv.org/abs/2506.03516v1
- Date: Wed, 04 Jun 2025 03:04:54 GMT
- Title: SemNav: A Model-Based Planner for Zero-Shot Object Goal Navigation Using Vision-Foundation Models
- Authors: Arnab Debnath, Gregory J. Stein, Jana Kosecka,
- Abstract summary: Vision Foundation Models (VFMs) offer powerful capabilities for visual understanding and reasoning.<n>We present a zero-shot object goal navigation framework that integrates the perceptual strength of VFMs with a model-based planner.<n>We evaluate our approach on the HM3D dataset using the Habitat simulator and demonstrate that our method achieves state-of-the-art performance.
- Score: 10.671262416557704
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Object goal navigation is a fundamental task in embodied AI, where an agent is instructed to locate a target object in an unexplored environment. Traditional learning-based methods rely heavily on large-scale annotated data or require extensive interaction with the environment in a reinforcement learning setting, often failing to generalize to novel environments and limiting scalability. To overcome these challenges, we explore a zero-shot setting where the agent operates without task-specific training, enabling more scalable and adaptable solution. Recent advances in Vision Foundation Models (VFMs) offer powerful capabilities for visual understanding and reasoning, making them ideal for agents to comprehend scenes, identify relevant regions, and infer the likely locations of objects. In this work, we present a zero-shot object goal navigation framework that integrates the perceptual strength of VFMs with a model-based planner that is capable of long-horizon decision making through frontier exploration. We evaluate our approach on the HM3D dataset using the Habitat simulator and demonstrate that our method achieves state-of-the-art performance in terms of success weighted by path length for zero-shot object goal navigation.
Related papers
- History-Augmented Vision-Language Models for Frontier-Based Zero-Shot Object Navigation [5.343932820859596]
This paper introduces a novel zero-shot ObjectNav framework that pioneers the use of dynamic, history-aware prompting.<n>Our core innovation lies in providing the VLM with action history context, enabling it to generate semantic guidance scores for navigation actions.<n>We also introduce a VLM-assisted waypoint generation mechanism for refining the final approach to detected objects.
arXiv Detail & Related papers (2025-06-19T21:50:16Z) - Cognitive Planning for Object Goal Navigation using Generative AI Models [0.979851640406258]
We present a novel framework for solving the object goal navigation problem that generates efficient exploration strategies.
Our approach enables a robot to navigate unfamiliar environments by leveraging Large Language Models (LLMs) and Large Vision-Language Models (LVLMs)
arXiv Detail & Related papers (2024-03-30T10:54:59Z) - Probable Object Location (POLo) Score Estimation for Efficient Object
Goal Navigation [15.623723522165731]
We introduce a novel framework centered around the Probable Object Location (POLo) score.
We further enhance the framework's practicality by introducing POLoNet, a neural network trained to approximate the computationally intensive POLo score.
Our experiments, involving the first phase of the OVMM 2023 challenge, demonstrate that an agent equipped with POLoNet significantly outperforms a range of baseline methods.
arXiv Detail & Related papers (2023-11-14T08:45:32Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - How To Not Train Your Dragon: Training-free Embodied Object Goal
Navigation with Semantic Frontiers [94.46825166907831]
We present a training-free solution to tackle the object goal navigation problem in Embodied AI.
Our method builds a structured scene representation based on the classic visual simultaneous localization and mapping (V-SLAM) framework.
Our method propagates semantics on the scene graphs based on language priors and scene statistics to introduce semantic knowledge to the geometric frontiers.
arXiv Detail & Related papers (2023-05-26T13:38:33Z) - Can an Embodied Agent Find Your "Cat-shaped Mug"? LLM-Guided Exploration
for Zero-Shot Object Navigation [58.3480730643517]
We present LGX, a novel algorithm for Language-Driven Zero-Shot Object Goal Navigation (L-ZSON)
Our approach makes use of Large Language Models (LLMs) for this task.
We achieve state-of-the-art zero-shot object navigation results on RoboTHOR with a success rate (SR) improvement of over 27% over the current baseline.
arXiv Detail & Related papers (2023-03-06T20:19:19Z) - Object Manipulation via Visual Target Localization [64.05939029132394]
Training agents to manipulate objects, poses many challenges.
We propose an approach that explores the environment in search for target objects, computes their 3D coordinates once they are located, and then continues to estimate their 3D locations even when the objects are not visible.
Our evaluations show a massive 3x improvement in success rate over a model that has access to the same sensory suite.
arXiv Detail & Related papers (2022-03-15T17:59:01Z) - Landmark Policy Optimization for Object Navigation Task [77.34726150561087]
This work studies object goal navigation task, which involves navigating to the closest object related to the given semantic category in unseen environments.
Recent works have shown significant achievements both in the end-to-end Reinforcement Learning approach and modular systems, but need a big step forward to be robust and optimal.
We propose a hierarchical method that incorporates standard task formulation and additional area knowledge as landmarks, with a way to extract these landmarks.
arXiv Detail & Related papers (2021-09-17T12:28:46Z) - Exploiting Scene-specific Features for Object Goal Navigation [9.806910643086043]
We introduce a new reduced dataset that speeds up the training of navigation models.
Our proposed dataset permits the training of models that do not exploit online-built maps in reasonable times.
We propose the SMTSC model, an attention-based model capable of exploiting the correlation between scenes and objects contained in them.
arXiv Detail & Related papers (2020-08-21T10:16:01Z) - Object Goal Navigation using Goal-Oriented Semantic Exploration [98.14078233526476]
This work studies the problem of object goal navigation which involves navigating to an instance of the given object category in unseen environments.
We propose a modular system called, Goal-Oriented Semantic Exploration' which builds an episodic semantic map and uses it to explore the environment efficiently.
arXiv Detail & Related papers (2020-07-01T17:52:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.