論文の概要: UniTEX: Universal High Fidelity Generative Texturing for 3D Shapes
- arxiv url: http://arxiv.org/abs/2505.23253v1
- Date: Thu, 29 May 2025 08:58:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-30 18:14:07.773058
- Title: UniTEX: Universal High Fidelity Generative Texturing for 3D Shapes
- Title(参考訳): UniTEX:3D形状のための汎用高忠実な生成テクスチャ
- Authors: Yixun Liang, Kunming Luo, Xiao Chen, Rui Chen, Hongyu Yan, Weiyu Li, Jiarui Liu, Ping Tan,
- Abstract要約: 二段階テクスチャ生成フレームワークUniTEXを提案する。
UniTEXは、既存のアプローチに比べて視覚的品質とテクスチャの整合性が優れている。
- 参考スコア(独自算出の注目度): 35.667175445637604
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present UniTEX, a novel two-stage 3D texture generation framework to create high-quality, consistent textures for 3D assets. Existing approaches predominantly rely on UV-based inpainting to refine textures after reprojecting the generated multi-view images onto the 3D shapes, which introduces challenges related to topological ambiguity. To address this, we propose to bypass the limitations of UV mapping by operating directly in a unified 3D functional space. Specifically, we first propose that lifts texture generation into 3D space via Texture Functions (TFs)--a continuous, volumetric representation that maps any 3D point to a texture value based solely on surface proximity, independent of mesh topology. Then, we propose to predict these TFs directly from images and geometry inputs using a transformer-based Large Texturing Model (LTM). To further enhance texture quality and leverage powerful 2D priors, we develop an advanced LoRA-based strategy for efficiently adapting large-scale Diffusion Transformers (DiTs) for high-quality multi-view texture synthesis as our first stage. Extensive experiments demonstrate that UniTEX achieves superior visual quality and texture integrity compared to existing approaches, offering a generalizable and scalable solution for automated 3D texture generation. Code will available in: https://github.com/YixunLiang/UniTEX.
- Abstract(参考訳): We present UniTEX, a novel two-stage 3D texture generation framework to create high-quality, consistent textures for 3D assets。
既存のアプローチは、生成したマルチビュー画像を3次元形状に再投影した後、テクスチャを洗練するためにUVベースの塗装に大きく依存しており、トポロジ的曖昧性に関連する課題が紹介されている。
そこで本研究では,UVマッピングの限界を回避するために,統一された3次元関数空間で直接操作することを提案する。
具体的には,メッシュトポロジに依存しない表面近接のみに基づくテクスチャ値に任意の3D点をマッピングする連続的な体積表現として,テクスチャ生成をテクスチャ関数(TF)を介して3次元空間に持ち上げることを提案する。
そこで我々は,変換器を用いた大規模テクスチャモデル(LTM)を用いて,画像や幾何学的入力から直接これらのTFを予測することを提案する。
テクスチャ品質をさらに向上し,強力な2D先行技術を活用するため,我々は,高品質なマルチビューテクスチャ合成のための大規模拡散トランスフォーマ(DiT)を効率よく適用するための,高度なLoRAベースの戦略を開発した。
大規模な実験により、UniTEXは既存の手法に比べて視覚的品質とテクスチャの整合性に優れており、3Dテクスチャの自動生成のための汎用的でスケーラブルなソリューションを提供する。
コードは、https://github.com/YixunLiang/UniTEX.comで提供される。
関連論文リスト
- RomanTex: Decoupling 3D-aware Rotary Positional Embedded Multi-Attention Network for Texture Synthesis [10.350576861948952]
RomanTexはマルチビューベースのテクスチャ生成フレームワークで、マルチアテンションネットワークと基礎となる3D表現を統合している。
本手法はテクスチャの品質と整合性を実現する。
論文 参考訳(メタデータ) (2025-03-24T17:56:11Z) - Pandora3D: A Comprehensive Framework for High-Quality 3D Shape and Texture Generation [56.862552362223425]
本稿では,多様な入力プロンプトから高品質な3次元形状とテクスチャを生成するための包括的枠組みを提案する。
フレームワークは3次元形状生成とテクスチャ生成で構成されている。
本報告では,フレームワークの改良と拡張に向けたシステムアーキテクチャ,実験結果,今後の方向性について述べる。
論文 参考訳(メタデータ) (2025-02-20T04:22:30Z) - InsTex: Indoor Scenes Stylized Texture Synthesis [81.12010726769768]
拡張現実(ARVR)アプリケーションでは、高品質なテクスチャが3Dシーンに不可欠である。
現在の手法は、長い処理時間と視覚的アーティファクトに悩まされている。
3Dシーンのための高品質なテクスチャを生成するために設計された2段階アーキテクチャを提案する。
論文 参考訳(メタデータ) (2025-01-22T08:37:59Z) - TEXGen: a Generative Diffusion Model for Mesh Textures [63.43159148394021]
我々は、UVテクスチャ空間自体における学習の根本的な問題に焦点を当てる。
本稿では,点クラウド上にアテンション層を持つUVマップ上の畳み込みをインターリーブするスケーラブルなネットワークアーキテクチャを提案する。
テキストプロンプトとシングルビュー画像によって導かれるUVテクスチャマップを生成する7億のパラメータ拡散モデルを訓練する。
論文 参考訳(メタデータ) (2024-11-22T05:22:11Z) - MVPaint: Synchronized Multi-View Diffusion for Painting Anything 3D [63.9188712646076]
テクスチャリングは3Dアセット生産であり、視覚的魅力と視覚的魅力を高める。
近年の進歩にもかかわらず、メソッドは、主に局所的な不連続のために、しばしばサブパー結果をもたらす。
本稿では,高解像度かつシームレスなマルチビュー一貫性を実現するMVPaintという新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-04T17:59:39Z) - 3DTextureTransformer: Geometry Aware Texture Generation for Arbitrary
Mesh Topology [1.4349415652822481]
3Dメッシュと実世界の2D画像の集合が与えられた新しい3Dメッシュのテクスチャを生成することを学ぶことは、3Dシミュレーション、拡張現実、仮想現実、ゲーム、アーキテクチャ、デザインなど、さまざまな領域のアプリケーションにとって重要な問題である。
既存のソリューションは、高品質なテクスチャを生成したり、元の高解像度の入力メッシュトポロジを正規のグリッドに変形させたりすることで、この生成を容易にするが、元のメッシュトポロジを失う。
本稿では,3DTextureTransformerという新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-07T05:01:07Z) - TexFusion: Synthesizing 3D Textures with Text-Guided Image Diffusion
Models [77.85129451435704]
大規模誘導画像拡散モデルを用いて3次元テクスチャを合成する手法を提案する。
具体的には、潜時拡散モデルを利用し、セット・デノナイジング・モデルと集合・デノナイジング・テキスト・マップを適用する。
論文 参考訳(メタデータ) (2023-10-20T19:15:29Z) - AUV-Net: Learning Aligned UV Maps for Texture Transfer and Synthesis [78.17671694498185]
AUV-Netは,3次元表面を2次元に整列したUV空間に埋め込むことを学習する。
結果として、テクスチャはオブジェクト間で整列し、画像の生成モデルによって容易に合成できる。
学習されたUVマッピングとアライメントテクスチャ表現は、テクスチャ転送、テクスチャ合成、テクスチャ化された単一ビュー3D再構成など、さまざまなアプリケーションを可能にする。
論文 参考訳(メタデータ) (2022-04-06T21:39:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。