Data-efficient Meta-models for Evaluation of Context-based Questions and Answers in LLMs
- URL: http://arxiv.org/abs/2505.23299v1
- Date: Thu, 29 May 2025 09:50:56 GMT
- Title: Data-efficient Meta-models for Evaluation of Context-based Questions and Answers in LLMs
- Authors: Julia Belikova, Konstantin Polev, Rauf Parchiev, Dmitry Simakov,
- Abstract summary: Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) systems are increasingly deployed in industry applications.<n>Their reliability remains hampered by challenges in detecting hallucinations.<n>This paper addresses the bottleneck of data annotation by investigating the feasibility of reducing training data requirements.
- Score: 1.6332728502735252
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) systems are increasingly deployed in industry applications, yet their reliability remains hampered by challenges in detecting hallucinations. While supervised state-of-the-art (SOTA) methods that leverage LLM hidden states -- such as activation tracing and representation analysis -- show promise, their dependence on extensively annotated datasets limits scalability in real-world applications. This paper addresses the critical bottleneck of data annotation by investigating the feasibility of reducing training data requirements for two SOTA hallucination detection frameworks: Lookback Lens, which analyzes attention head dynamics, and probing-based approaches, which decode internal model representations. We propose a methodology combining efficient classification algorithms with dimensionality reduction techniques to minimize sample size demands while maintaining competitive performance. Evaluations on standardized question-answering RAG benchmarks show that our approach achieves performance comparable to strong proprietary LLM-based baselines with only 250 training samples. These results highlight the potential of lightweight, data-efficient paradigms for industrial deployment, particularly in annotation-constrained scenarios.
Related papers
- Discrete Tokenization for Multimodal LLMs: A Comprehensive Survey [69.45421620616486]
This work presents the first structured taxonomy and analysis of discrete tokenization methods designed for large language models (LLMs)<n>We categorize 8 representative VQ variants that span classical and modern paradigms and analyze their algorithmic principles, training dynamics, and integration challenges with LLM pipelines.<n>We identify key challenges including codebook collapse, unstable gradient estimation, and modality-specific encoding constraints.
arXiv Detail & Related papers (2025-07-21T10:52:14Z) - mRAG: Elucidating the Design Space of Multi-modal Retrieval-Augmented Generation [5.647319807077936]
Large Vision-Language Models (LVLMs) have made remarkable strides in multimodal tasks such as visual question answering, visual grounding, and complex reasoning.<n>Retrieval-Augmented Generation (RAG) offers a practical solution to mitigate these challenges by allowing the LVLMs to access large-scale knowledge databases via retrieval mechanisms.
arXiv Detail & Related papers (2025-05-29T23:32:03Z) - Towards Robust Universal Information Extraction: Benchmark, Evaluation, and Solution [66.11004226578771]
Existing robust benchmark datasets have two key limitations.<n>They generate only a limited range of perturbations for a single Information Extraction (IE) task.<n>Considering the powerful generation capabilities of Large Language Models (LLMs), we introduce a new benchmark dataset for Robust UIE, called RUIE-Bench.<n>We show that training with only textbf15% of the data leads to an average textbf7.5% relative performance improvement across three IE tasks.
arXiv Detail & Related papers (2025-03-05T05:39:29Z) - Mitigating Forgetting in LLM Fine-Tuning via Low-Perplexity Token Learning [61.99353167168545]
We show that fine-tuning with LLM-generated data improves target task performance and reduces non-target task degradation.<n>This is the first work to provide an empirical explanation based on token perplexity reduction to mitigate catastrophic forgetting in LLMs after fine-tuning.
arXiv Detail & Related papers (2025-01-24T08:18:56Z) - Understanding Chain-of-Thought in LLMs through Information Theory [16.78730663293352]
We formalize Chain-of-Thought (CoT) reasoning in Large Language Models (LLMs) through an information-theoretic lens.
Specifically, our framework quantifies the information gain' at each reasoning step, enabling the identification of failure modes.
We demonstrate the efficacy of our approach through extensive experiments on toy and GSM-8K data, where it significantly outperforms existing outcome-based methods.
arXiv Detail & Related papers (2024-11-18T19:14:36Z) - Self-training Large Language Models through Knowledge Detection [26.831873737733737]
Large language models (LLMs) often necessitate extensive labeled datasets and training compute to achieve impressive performance across downstream tasks.
This paper explores a self-training paradigm, where the LLM autonomously curates its own labels and selectively trains on unknown data samples.
Empirical evaluations demonstrate significant improvements in reducing hallucination in generation across multiple subjects.
arXiv Detail & Related papers (2024-06-17T07:25:09Z) - VALOR-EVAL: Holistic Coverage and Faithfulness Evaluation of Large Vision-Language Models [57.43276586087863]
Large Vision-Language Models (LVLMs) suffer from hallucination issues, wherein the models generate plausible-sounding but factually incorrect outputs.
Existing benchmarks are often limited in scope, focusing mainly on object hallucinations.
We introduce a multi-dimensional benchmark covering objects, attributes, and relations, with challenging images selected based on associative biases.
arXiv Detail & Related papers (2024-04-22T04:49:22Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
This paper presents ReEval, an LLM-based framework using prompt chaining to perturb the original evidence for generating new test cases.
We implement ReEval using ChatGPT and evaluate the resulting variants of two popular open-domain QA datasets.
Our generated data is human-readable and useful to trigger hallucination in large language models.
arXiv Detail & Related papers (2023-10-19T06:37:32Z) - Revisit Input Perturbation Problems for LLMs: A Unified Robustness
Evaluation Framework for Noisy Slot Filling Task [18.623619585980688]
We propose a unified robustness evaluation framework based on the slot-filling task to evaluate the dialogue understanding capability of large language models.
Specifically, we construct a input perturbation evaluation dataset, Noise-LLM, which contains five types of single perturbation and four types of mixed perturbation data.
Our aim is to assess how well various robustness methods of LLMs perform in real-world noisy scenarios.
arXiv Detail & Related papers (2023-10-10T10:22:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.