Discrete Tokenization for Multimodal LLMs: A Comprehensive Survey
- URL: http://arxiv.org/abs/2507.22920v1
- Date: Mon, 21 Jul 2025 10:52:14 GMT
- Title: Discrete Tokenization for Multimodal LLMs: A Comprehensive Survey
- Authors: Jindong Li, Yali Fu, Jiahong Liu, Linxiao Cao, Wei Ji, Menglin Yang, Irwin King, Ming-Hsuan Yang,
- Abstract summary: This work presents the first structured taxonomy and analysis of discrete tokenization methods designed for large language models (LLMs)<n>We categorize 8 representative VQ variants that span classical and modern paradigms and analyze their algorithmic principles, training dynamics, and integration challenges with LLM pipelines.<n>We identify key challenges including codebook collapse, unstable gradient estimation, and modality-specific encoding constraints.
- Score: 69.45421620616486
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The rapid advancement of large language models (LLMs) has intensified the need for effective mechanisms to transform continuous multimodal data into discrete representations suitable for language-based processing. Discrete tokenization, with vector quantization (VQ) as a central approach, offers both computational efficiency and compatibility with LLM architectures. Despite its growing importance, there is a lack of a comprehensive survey that systematically examines VQ techniques in the context of LLM-based systems. This work fills this gap by presenting the first structured taxonomy and analysis of discrete tokenization methods designed for LLMs. We categorize 8 representative VQ variants that span classical and modern paradigms and analyze their algorithmic principles, training dynamics, and integration challenges with LLM pipelines. Beyond algorithm-level investigation, we discuss existing research in terms of classical applications without LLMs, LLM-based single-modality systems, and LLM-based multimodal systems, highlighting how quantization strategies influence alignment, reasoning, and generation performance. In addition, we identify key challenges including codebook collapse, unstable gradient estimation, and modality-specific encoding constraints. Finally, we discuss emerging research directions such as dynamic and task-adaptive quantization, unified tokenization frameworks, and biologically inspired codebook learning. This survey bridges the gap between traditional vector quantization and modern LLM applications, serving as a foundational reference for the development of efficient and generalizable multimodal systems. A continuously updated version is available at: https://github.com/jindongli-Ai/LLM-Discrete-Tokenization-Survey.
Related papers
- QLLM: Do We Really Need a Mixing Network for Credit Assignment in Multi-Agent Reinforcement Learning? [4.429189958406034]
Credit assignment has remained a fundamental challenge in multi-agent reinforcement learning (MARL)<n>We propose a novel algorithm, textbfQLLM, which facilitates the automatic construction of credit assignment functions using large language models (LLMs)<n>Extensive experiments conducted on several standard MARL benchmarks demonstrate that the proposed method consistently outperforms existing state-of-the-art baselines.
arXiv Detail & Related papers (2025-04-17T14:07:11Z) - Post-Incorporating Code Structural Knowledge into LLMs via In-Context Learning for Code Translation [10.77747590700758]
Large language models (LLMs) have achieved significant advancements in software mining.<n> handling the syntactic structure of source code remains a challenge.<n>This paper employs incontext learning (ICL) to integrate code structural knowledge into pre-trained LLMs.
arXiv Detail & Related papers (2025-03-28T10:59:42Z) - Will Pre-Training Ever End? A First Step Toward Next-Generation Foundation MLLMs via Self-Improving Systematic Cognition [89.50068130832635]
Self-Improving cognition (SIcog) is a self-learning framework for constructing next-generation foundation MLLMs by multimodal knowledge.<n>We propose Chain-of-Description for step-by-step visual understanding and integrate structured Chain-of-Thought (CoT) reasoning to support in-depth multimodal reasoning.<n>Experiments demonstrate SIcog's effectiveness in developing MLLMs with enhanced multimodal cognition.
arXiv Detail & Related papers (2025-03-16T00:25:13Z) - Keeping Yourself is Important in Downstream Tuning Multimodal Large Language Model [63.14883657299359]
Multi-modal Large Language Models (MLLMs) integrate visual and linguistic reasoning to address complex tasks such as image captioning and visual question answering.<n> tuning MLLMs for downstream tasks encounters two key challenges: Task-Expert, where distribution shifts between pre-training and target datasets constrain target performance, and OpenWorld Stabilization, where catastrophic forgetting erases the model general knowledge.
arXiv Detail & Related papers (2025-03-06T15:29:13Z) - LSAQ: Layer-Specific Adaptive Quantization for Large Language Model Deployment [12.80921403367322]
Large Language Models (LLMs) demonstrate exceptional performance across various domains.<n> Quantization techniques, which reduce the size and memory requirements of LLMs, are effective for deploying LLMs on resource-limited edge devices.<n>We propose Layer-Specific Adaptive Quantization (LSAQ), a system for adaptive quantization and dynamic deployment of LLMs based on layer importance.
arXiv Detail & Related papers (2024-12-24T03:43:15Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - A Survey of Low-bit Large Language Models: Basics, Systems, and Algorithms [34.818641985348805]
Large language models (LLMs) have achieved remarkable advancements in natural language processing.
However, the expensive memory and computational requirements present significant challenges for their practical deployment.
Low-bit quantization has emerged as a critical approach to mitigate these challenges by reducing the bit-width of model parameters.
arXiv Detail & Related papers (2024-09-25T07:38:02Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
Multimodal Large Language Models (MLLMs) address the complexities of real-world applications far beyond the capabilities of single-modality systems.
This paper systematically sorts out the applications of MLLM in multimodal tasks such as natural language, vision, and audio.
arXiv Detail & Related papers (2024-08-02T15:14:53Z) - On the Design and Analysis of LLM-Based Algorithms [74.7126776018275]
Large language models (LLMs) are used as sub-routines in algorithms.
LLMs have achieved remarkable empirical success.
Our proposed framework holds promise for advancing LLM-based algorithms.
arXiv Detail & Related papers (2024-07-20T07:39:07Z) - Evaluating the Generalization Ability of Quantized LLMs: Benchmark, Analysis, and Toolbox [46.39670209441478]
Large language models (LLMs) have exhibited exciting progress in multiple scenarios.
As an effective means to reduce memory footprint and inference cost, quantization also faces challenges in performance degradation at low bit-widths.
This work provides a comprehensive benchmark suite for this research topic, including an evaluation system, detailed analyses, and a general toolbox.
arXiv Detail & Related papers (2024-06-15T12:02:14Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.