Representing local protein environments with atomistic foundation models
- URL: http://arxiv.org/abs/2505.23354v2
- Date: Mon, 16 Jun 2025 22:48:20 GMT
- Title: Representing local protein environments with atomistic foundation models
- Authors: Meital Bojan, Sanketh Vedula, Advaith Maddipatla, Nadav Bojan Sellam, Federico Napoli, Paul Schanda, Alex M. Bronstein,
- Abstract summary: We propose a novel representation for a local protein environment derived from the intermediate features of atomistic foundation models (AFMs)<n>We show that the AFM-derived representation space exhibits meaningful structure, enabling the construction of data-driven priors.<n>In the context of biomolecular NMR spectroscopy, we demonstrate that the proposed representations enable a first-of-its-kind physics-informed chemical shift predictor.
- Score: 6.120694232253299
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The local structure of a protein strongly impacts its function and interactions with other molecules. Therefore, a concise, informative representation of a local protein environment is essential for modeling and designing proteins and biomolecular interactions. However, these environments' extensive structural and chemical variability makes them challenging to model, and such representations remain under-explored. In this work, we propose a novel representation for a local protein environment derived from the intermediate features of atomistic foundation models (AFMs). We demonstrate that this embedding effectively captures both local structure (e.g., secondary motifs), and chemical features (e.g., amino-acid identity and protonation state). We further show that the AFM-derived representation space exhibits meaningful structure, enabling the construction of data-driven priors over the distribution of biomolecular environments. Finally, in the context of biomolecular NMR spectroscopy, we demonstrate that the proposed representations enable a first-of-its-kind physics-informed chemical shift predictor that achieves state-of-the-art accuracy. Our results demonstrate the surprising effectiveness of atomistic foundation models and their emergent representations for protein modeling beyond traditional molecular simulations. We believe this will open new lines of work in constructing effective functional representations for protein environments.
Related papers
- Aligning Protein Conformation Ensemble Generation with Physical Feedback [29.730515284798397]
Energy-based Alignment (EBA) is a method that aligns generative models with feedback from physical models.<n>EBA achieves state-of-the-art performance in generating high-quality protein ensembles.
arXiv Detail & Related papers (2025-05-30T04:33:39Z) - A Generalist Cross-Domain Molecular Learning Framework for Structure-Based Drug Discovery [32.573496601865465]
Structure-based drug discovery (SBDD) is a systematic scientific process that develops new drugs by leveraging the detailed physical structure of the target protein.<n>Recent advancements in pre-trained models for biomolecules have demonstrated remarkable success across various biochemical applications.
arXiv Detail & Related papers (2025-03-06T12:04:56Z) - AUTODIFF: Autoregressive Diffusion Modeling for Structure-based Drug Design [16.946648071157618]
We propose a diffusion-based fragment-wise autoregressive generation model for structure-based drug design (SBDD)
We design a novel molecule assembly strategy named conformal motif that preserves the conformation of local structures of molecules first.
We then encode the interaction of the protein-ligand complex with an SE(3)-equivariant convolutional network and generate molecules motif-by-motif with diffusion modeling.
arXiv Detail & Related papers (2024-04-02T14:44:02Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
Generation of molecules with desired chemical and biological properties is critical for drug discovery.
We propose a probabilistic generative model to capture the joint distribution of molecules and their properties.
Our method achieves very strong performances on various molecule design tasks.
arXiv Detail & Related papers (2023-06-09T03:04:21Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
We introduce a novel deep learning framework, called Distributional Graphormer (DiG), in an attempt to predict the equilibrium distribution of molecular systems.
DiG employs deep neural networks to transform a simple distribution towards the equilibrium distribution, conditioned on a descriptor of a molecular system.
arXiv Detail & Related papers (2023-06-08T17:12:08Z) - A Latent Diffusion Model for Protein Structure Generation [50.74232632854264]
We propose a latent diffusion model that can reduce the complexity of protein modeling.
We show that our method can effectively generate novel protein backbone structures with high designability and efficiency.
arXiv Detail & Related papers (2023-05-06T19:10:19Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
We present NeuralPLexer, a computational approach that can directly predict protein-ligand complex structures.
Our study suggests that a data-driven approach can capture the structural cooperativity between proteins and small molecules, showing promise in accelerating the design of enzymes, drug molecules, and beyond.
arXiv Detail & Related papers (2022-09-30T01:46:38Z) - Protein Structure and Sequence Generation with Equivariant Denoising
Diffusion Probabilistic Models [3.5450828190071646]
An important task in bioengineering is designing proteins with specific 3D structures and chemical properties which enable targeted functions.
We introduce a generative model of both protein structure and sequence that can operate at significantly larger scales than previous molecular generative modeling approaches.
arXiv Detail & Related papers (2022-05-26T16:10:09Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes.
Recently, machine learned force fields (MLFFs) emerged as an alternative means to execute MD simulations.
This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations.
arXiv Detail & Related papers (2022-05-17T13:08:28Z) - A silicon qubit platform for in situ single molecule structure
determination [0.7187911114620571]
Imaging individual conformational instances of generic, inhomogeneous, transient or intrinsically disordered protein systems at the single molecule level in situ is one of the notable challenges in structural biology.
Here we tackle the problem by designing a single molecule imaging platform technology embracing the advantages silicon-based spin qubits.
We demonstrate through detailed simulation, that this platform enables scalable atomic-level structure-determination of individual molecular systems in native environments.
arXiv Detail & Related papers (2021-12-07T10:42:09Z) - Transfer Learning for Protein Structure Classification at Low Resolution [124.5573289131546]
We show that it is possible to make accurate ($geq$80%) predictions of protein class and architecture from structures determined at low ($leq$3A) resolution.
We provide proof of concept for high-speed, low-cost protein structure classification at low resolution, and a basis for extension to prediction of function.
arXiv Detail & Related papers (2020-08-11T15:01:32Z) - Energy-based models for atomic-resolution protein conformations [88.68597850243138]
We propose an energy-based model (EBM) of protein conformations that operates at atomic scale.
The model is trained solely on crystallized protein data.
An investigation of the model's outputs and hidden representations finds that it captures physicochemical properties relevant to protein energy.
arXiv Detail & Related papers (2020-04-27T20:45:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.