AUTODIFF: Autoregressive Diffusion Modeling for Structure-based Drug Design
- URL: http://arxiv.org/abs/2404.02003v2
- Date: Wed, 3 Apr 2024 12:05:27 GMT
- Title: AUTODIFF: Autoregressive Diffusion Modeling for Structure-based Drug Design
- Authors: Xinze Li, Penglei Wang, Tianfan Fu, Wenhao Gao, Chengtao Li, Leilei Shi, Junhong Liu,
- Abstract summary: We propose a diffusion-based fragment-wise autoregressive generation model for structure-based drug design (SBDD)
We design a novel molecule assembly strategy named conformal motif that preserves the conformation of local structures of molecules first.
We then encode the interaction of the protein-ligand complex with an SE(3)-equivariant convolutional network and generate molecules motif-by-motif with diffusion modeling.
- Score: 16.946648071157618
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Structure-based drug design (SBDD), which aims to generate molecules that can bind tightly to the target protein, is an essential problem in drug discovery, and previous approaches have achieved initial success. However, most existing methods still suffer from invalid local structure or unrealistic conformation issues, which are mainly due to the poor leaning of bond angles or torsional angles. To alleviate these problems, we propose AUTODIFF, a diffusion-based fragment-wise autoregressive generation model. Specifically, we design a novel molecule assembly strategy named conformal motif that preserves the conformation of local structures of molecules first, then we encode the interaction of the protein-ligand complex with an SE(3)-equivariant convolutional network and generate molecules motif-by-motif with diffusion modeling. In addition, we also improve the evaluation framework of SBDD by constraining the molecular weights of the generated molecules in the same range, together with some new metrics, which make the evaluation more fair and practical. Extensive experiments on CrossDocked2020 demonstrate that our approach outperforms the existing models in generating realistic molecules with valid structures and conformations while maintaining high binding affinity.
Related papers
- Manifold-Constrained Nucleus-Level Denoising Diffusion Model for Structure-Based Drug Design [81.95343363178662]
atoms must maintain a minimum pairwise distance to avoid separation violations.
NucleusDiff models the interactions between atomic nuclei and their surrounding electron clouds by enforcing the distance constraint.
It reduces violation rate by up to 1000% and enhances binding affinity by up to 22.16%, surpassing state-of-the-art models for structure-based drug design.
arXiv Detail & Related papers (2024-09-16T08:42:46Z) - Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization [147.7899503829411]
AliDiff is a novel framework to align pretrained target diffusion models with preferred functional properties.
It can generate molecules with state-of-the-art binding energies with up to -7.07 Avg. Vina Score.
arXiv Detail & Related papers (2024-07-01T06:10:29Z) - Diffusion Models in $\textit{De Novo}$ Drug Design [0.0]
Diffusion models have emerged as powerful tools for molecular generation, particularly in the context of 3D molecular structures.
This review focuses on the technical implementation of diffusion models tailored for 3D molecular generation.
arXiv Detail & Related papers (2024-06-07T06:34:13Z) - UniIF: Unified Molecule Inverse Folding [67.60267592514381]
We propose a unified model UniIF for inverse folding of all molecules.
Our proposed method surpasses state-of-the-art methods on all tasks.
arXiv Detail & Related papers (2024-05-29T10:26:16Z) - NCIDiff: Non-covalent Interaction-generative Diffusion Model for Improving Reliability of 3D Molecule Generation Inside Protein Pocket [0.0]
Non-covalent patterns (NCIs) are universal patterns throughout protein-ligand complexes.
Our proposed model, NCIDiff, simultaneously denoises NCI types of protein-ligand edges along with a 3D graph of a ligand molecule during the sampling.
With the NCI-generating strategy, our model generates reliable NCIs especially outperforming the baseline diffusion-based models.
arXiv Detail & Related papers (2024-05-27T06:26:55Z) - DecompOpt: Controllable and Decomposed Diffusion Models for Structure-based Molecular Optimization [49.85944390503957]
DecompOpt is a structure-based molecular optimization method based on a controllable and diffusion model.
We show that DecompOpt can efficiently generate molecules with improved properties than strong de novo baselines.
arXiv Detail & Related papers (2024-03-07T02:53:40Z) - DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design [62.68420322996345]
Existing structured-based drug design methods treat all ligand atoms equally.
We propose a new diffusion model, DecompDiff, with decomposed priors over arms and scaffold.
Our approach achieves state-of-the-art performance in generating high-affinity molecules.
arXiv Detail & Related papers (2024-02-26T05:21:21Z) - Autoregressive fragment-based diffusion for pocket-aware ligand design [0.0]
AutoFragDiff is a fragment-based autoregressive diffusion model for generating 3D structures conditioned on target protein structures.
We employ geometric vector perceptrons to predict atom types and spatial coordinates of new molecular fragments conditioned on molecular scaffolds and protein pockets.
arXiv Detail & Related papers (2023-12-15T04:03:03Z) - Accelerating Inference in Molecular Diffusion Models with Latent Representations of Protein Structure [0.0]
Diffusion generative models operate directly on 3D molecular structures.
We present a novel GNN-based architecture for learning latent representations of molecular structure.
Our model achieves comparable performance to one with an all-atom protein representation while exhibiting a 3-fold reduction in inference time.
arXiv Detail & Related papers (2023-11-22T15:32:31Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
We propose a new retrieval-based framework for controllable molecule generation.
We use a small set of molecules to steer the pre-trained generative model towards synthesizing molecules that satisfy the given design criteria.
Our approach is agnostic to the choice of generative models and requires no task-specific fine-tuning.
arXiv Detail & Related papers (2022-08-23T17:01:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.