論文の概要: Adaptive Spatial Augmentation for Semi-supervised Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2505.23438v1
- Date: Thu, 29 May 2025 13:35:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-30 18:14:07.87646
- Title: Adaptive Spatial Augmentation for Semi-supervised Semantic Segmentation
- Title(参考訳): 半教師付きセマンティックセグメンテーションにおける適応的空間拡張
- Authors: Lingyan Ran, Yali Li, Tao Zhuo, Shizhou Zhang, Yanning Zhang,
- Abstract要約: 半教師付きセマンティックセグメンテーションでは、データ拡張は弱い一貫性の規則化フレームワークにおいて重要な役割を果たす。
空間増強はSSSSのモデルトレーニングに寄与するが,弱い面と強い面の間には一貫性のないマスクが生じる。
本稿では,各インスタンスのエントロピーに基づいて動的に拡張を調整する適応的拡張戦略を提案する。
- 参考スコア(独自算出の注目度): 51.645152962504056
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In semi-supervised semantic segmentation (SSSS), data augmentation plays a crucial role in the weak-to-strong consistency regularization framework, as it enhances diversity and improves model generalization. Recent strong augmentation methods have primarily focused on intensity-based perturbations, which have minimal impact on the semantic masks. In contrast, spatial augmentations like translation and rotation have long been acknowledged for their effectiveness in supervised semantic segmentation tasks, but they are often ignored in SSSS. In this work, we demonstrate that spatial augmentation can also contribute to model training in SSSS, despite generating inconsistent masks between the weak and strong augmentations. Furthermore, recognizing the variability among images, we propose an adaptive augmentation strategy that dynamically adjusts the augmentation for each instance based on entropy. Extensive experiments show that our proposed Adaptive Spatial Augmentation (\textbf{ASAug}) can be integrated as a pluggable module, consistently improving the performance of existing methods and achieving state-of-the-art results on benchmark datasets such as PASCAL VOC 2012, Cityscapes, and COCO.
- Abstract(参考訳): 半教師付きセマンティックセグメンテーション(SSSS)では、多様性を高め、モデル一般化を改善するため、データ拡張は弱い一貫性の規則化フレームワークにおいて重要な役割を果たす。
最近の強力な拡張法は主に強度に基づく摂動に焦点を当てており、セマンティックマスクへの影響は最小限である。
対照的に、翻訳や回転といった空間的拡張は、教師付きセマンティックセグメンテーションタスクにおいて有効であることが長年認識されてきたが、SSSSでは無視されることが多い。
本研究では,弱体化と強体化の間に無矛盾なマスクを生じるにもかかわらず,空間増強がSSSSのモデルトレーニングに寄与することを示した。
さらに,画像間のばらつきを認識し,エントロピーに基づいて各インスタンスの拡張を動的に調整する適応的拡張戦略を提案する。
拡張実験により,提案したAdaptive Spatial Augmentation (\textbf{ASAug}) をプラグ可能なモジュールとして統合し,既存手法の性能を一貫して改善し,PASCAL VOC 2012,Cityscapes,COCOなどのベンチマークデータセット上での最先端結果を達成することができた。
関連論文リスト
- Model Hemorrhage and the Robustness Limits of Large Language Models [119.46442117681147]
大規模言語モデル(LLM)は、自然言語処理タスク全体で強力なパフォーマンスを示すが、デプロイメント用に修正された場合、大幅なパフォーマンス低下を経験する。
この現象をモデル出血(パラメータ変更とアーキテクチャ変更によるパフォーマンス低下)と定義する。
論文 参考訳(メタデータ) (2025-03-31T10:16:03Z) - Unified Enhancement of the Generalization and Robustness of Language Models via Bi-Stage Optimization [2.502393972789905]
本稿では,LMの一般化とロバスト性の両方を均一に向上する二段階最適化フレームワークを提案する。
提案手法は,従来の手法と比較して,LMの一般化とロバスト性を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2025-03-19T13:50:36Z) - Your Language Model May Think Too Rigidly: Achieving Reasoning Consistency with Symmetry-Enhanced Training [66.48331530995786]
我々は、文脈から有用な情報を抽出する能力を向上させるデータ中心のアプローチであるsyMmetry-ENhanceD (MEND) Data Augmentationを提案する。
推論連鎖の増大を強調する既存の手法とは異なり,本手法は知識抽出段階におけるモデルロバスト性を向上させる。
論理的および算術的推論タスクの実験は、MENDが様々なクエリのバリエーションで推論性能を向上させることを示している。
論文 参考訳(メタデータ) (2025-02-25T03:03:35Z) - Salience-Invariant Consistent Policy Learning for Generalization in Visual Reinforcement Learning [12.9372563969007]
見えないシナリオにポリシーを一般化することは、視覚的強化学習において重要な課題である。
目に見えない環境では、不注意なピクセルがエージェントにタスク関連情報を含む表現を抽出させる可能性がある。
ゼロショット一般化のための効率的なフレームワークであるSalience-Invariant Consistent Policy Learningアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-02-12T12:00:16Z) - Promptable Anomaly Segmentation with SAM Through Self-Perception Tuning [63.55145330447408]
異常セグメンテーションのための textbfSelf-textbfPerceptinon textbfTuning (textbfSPT) 法を提案する。
SPT法は, 自己描画型チューニング戦略を取り入れ, 異常マスクの初期粗いドラフトを生成し, 精製処理を行う。
論文 参考訳(メタデータ) (2024-11-26T08:33:25Z) - Dynamic Kernel-Based Adaptive Spatial Aggregation for Learned Image
Compression [63.56922682378755]
本稿では,空間アグリゲーション機能の拡張に焦点をあて,動的カーネルベースの変換符号化を提案する。
提案したアダプティブアグリゲーションはカーネルオフセットを生成し、コンテント条件付き範囲の有効な情報をキャプチャして変換を支援する。
実験により,本手法は,最先端の学習手法と比較して,3つのベンチマークにおいて高い速度歪み性能が得られることを示した。
論文 参考訳(メタデータ) (2023-08-17T01:34:51Z) - Towards Composable Distributions of Latent Space Augmentations [0.0]
本稿では、複数の拡張を簡単に組み合わせることができる潜在空間画像拡張のための構成可能なフレームワークを提案する。
我々のフレームワークは変分オートエンコーダアーキテクチャに基づいており、潜在空間自体の線形変換による拡張に新しいアプローチを採用している。
これらの特性は、特定の拡張のペアでより優れたパフォーマンスを示すが、潜在空間を他の拡張のセットに転送してパフォーマンスを変更することができる。
論文 参考訳(メタデータ) (2023-03-06T19:37:01Z) - Augmentation Matters: A Simple-yet-Effective Approach to Semi-supervised
Semantic Segmentation [46.441263436298996]
本稿では,SSSの性能向上を目的としたデータ摂動に着目した,シンプルでクリーンなアプローチを提案する。
我々は、ランダムなデータ変換数を選択する、簡易なインテンシティベースの拡張を採用する。
また,ラベル付き情報をランダムに注入して,ラベルなしサンプルを適応的に増強する。
論文 参考訳(メタデータ) (2022-12-09T16:36:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。