LAFR: Efficient Diffusion-based Blind Face Restoration via Latent Codebook Alignment Adapter
- URL: http://arxiv.org/abs/2505.23462v1
- Date: Thu, 29 May 2025 14:11:16 GMT
- Title: LAFR: Efficient Diffusion-based Blind Face Restoration via Latent Codebook Alignment Adapter
- Authors: Runyi Li, Bin Chen, Jian Zhang, Radu Timofte,
- Abstract summary: Blind face restoration from low-quality (LQ) images is a challenging task that requires high-fidelity image reconstruction and the preservation of facial identity.<n>We propose LAFR, a novel codebook-based latent space adapter that aligns the latent distribution of LQ images with that of HQ counterparts.<n>We show that lightweight finetuning of diffusion prior on just 0.9% of FFHQ dataset is sufficient to achieve results comparable to state-of-the-art methods.
- Score: 52.93785843453579
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Blind face restoration from low-quality (LQ) images is a challenging task that requires not only high-fidelity image reconstruction but also the preservation of facial identity. While diffusion models like Stable Diffusion have shown promise in generating high-quality (HQ) images, their VAE modules are typically trained only on HQ data, resulting in semantic misalignment when encoding LQ inputs. This mismatch significantly weakens the effectiveness of LQ conditions during the denoising process. Existing approaches often tackle this issue by retraining the VAE encoder, which is computationally expensive and memory-intensive. To address this limitation efficiently, we propose LAFR (Latent Alignment for Face Restoration), a novel codebook-based latent space adapter that aligns the latent distribution of LQ images with that of HQ counterparts, enabling semantically consistent diffusion sampling without altering the original VAE. To further enhance identity preservation, we introduce a multi-level restoration loss that combines constraints from identity embeddings and facial structural priors. Additionally, by leveraging the inherent structural regularity of facial images, we show that lightweight finetuning of diffusion prior on just 0.9% of FFHQ dataset is sufficient to achieve results comparable to state-of-the-art methods, reduce training time by 70%. Extensive experiments on both synthetic and real-world face restoration benchmarks demonstrate the effectiveness and efficiency of LAFR, achieving high-quality, identity-preserving face reconstruction from severely degraded inputs.
Related papers
- DiffusionReward: Enhancing Blind Face Restoration through Reward Feedback Learning [40.641049729447175]
We introduce a ReFL framework, named DiffusionReward, to the Blind Face Restoration task for the first time.<n>The core of our framework is the Face Reward Model (FRM), which is trained using carefully annotated data.<n>Experiments on synthetic and wild datasets demonstrate that our method outperforms state-of-the-art methods.
arXiv Detail & Related papers (2025-05-23T13:53:23Z) - IQPFR: An Image Quality Prior for Blind Face Restoration and Beyond [56.99331967165238]
Blind Face Restoration (BFR) addresses the challenge of reconstructing degraded low-quality (LQ) facial images into high-quality (HQ) outputs.<n>We propose a novel framework that incorporates an Image Quality Prior (IQP) derived from No-Reference Image Quality Assessment (NR-IQA) models.<n>Our method outperforms state-of-the-art techniques across multiple benchmarks.
arXiv Detail & Related papers (2025-03-12T11:39:51Z) - Diff-Restorer: Unleashing Visual Prompts for Diffusion-based Universal Image Restoration [19.87693298262894]
We propose Diff-Restorer, a universal image restoration method based on the diffusion model.
We utilize the pre-trained visual language model to extract visual prompts from degraded images.
We also design a Degradation-aware Decoder to perform structural correction and convert the latent code to the pixel domain.
arXiv Detail & Related papers (2024-07-04T05:01:10Z) - One-Step Effective Diffusion Network for Real-World Image Super-Resolution [11.326598938246558]
We propose a one-step effective diffusion network, namely OSEDiff, for the Real-ISR problem.
We finetune the pre-trained diffusion network with trainable layers to adapt it to complex image degradations.
Our OSEDiff model can efficiently and effectively generate HQ images in just one diffusion step.
arXiv Detail & Related papers (2024-06-12T13:10:31Z) - CLR-Face: Conditional Latent Refinement for Blind Face Restoration Using
Score-Based Diffusion Models [57.9771859175664]
Recent generative-prior-based methods have shown promising blind face restoration performance.
Generating fine-grained facial details faithful to inputs remains a challenging problem.
We introduce a diffusion-based-prior inside a VQGAN architecture that focuses on learning the distribution over uncorrupted latent embeddings.
arXiv Detail & Related papers (2024-02-08T23:51:49Z) - Compensation Sampling for Improved Convergence in Diffusion Models [12.311434647047427]
Diffusion models achieve remarkable quality in image generation, but at a cost.
Iterative denoising requires many time steps to produce high fidelity images.
We argue that the denoising process is crucially limited by an accumulation of the reconstruction error due to an initial inaccurate reconstruction of the target data.
arXiv Detail & Related papers (2023-12-11T10:39:01Z) - Dual Associated Encoder for Face Restoration [68.49568459672076]
We propose a novel dual-branch framework named DAEFR to restore facial details from low-quality (LQ) images.
Our method introduces an auxiliary LQ branch that extracts crucial information from the LQ inputs.
We evaluate the effectiveness of DAEFR on both synthetic and real-world datasets.
arXiv Detail & Related papers (2023-08-14T17:58:33Z) - DifFace: Blind Face Restoration with Diffused Error Contraction [62.476329680424975]
DifFace is capable of coping with unseen and complex degradations more gracefully without complicated loss designs.
It is superior to current state-of-the-art methods, especially in cases with severe degradations.
arXiv Detail & Related papers (2022-12-13T11:52:33Z) - Implicit Subspace Prior Learning for Dual-Blind Face Restoration [66.67059961379923]
A novel implicit subspace prior learning (ISPL) framework is proposed as a generic solution to dual-blind face restoration.
Experimental results demonstrate significant perception-distortion improvement of ISPL against existing state-of-the-art methods.
arXiv Detail & Related papers (2020-10-12T08:04:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.