論文の概要: Subgraph Gaussian Embedding Contrast for Self-Supervised Graph Representation Learning
- arxiv url: http://arxiv.org/abs/2505.23529v1
- Date: Thu, 29 May 2025 15:07:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-30 18:14:07.9295
- Title: Subgraph Gaussian Embedding Contrast for Self-Supervised Graph Representation Learning
- Title(参考訳): グラフ表現学習のための部分グラフガウス埋め込みコントラスト
- Authors: Shifeng Xie, Aref Einizade, Jhony H. Giraldo,
- Abstract要約: グラフ表現学習(GRL)は、高次元グラフ構造化データを低次元ベクトルに符号化することを目的とした機械学習の基本課題である。
本研究では,新しいSubgraph Gaussian Embedding Contrast (SubGEC)法を提案する。
- 参考スコア(独自算出の注目度): 2.4305626489408465
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Representation Learning (GRL) is a fundamental task in machine learning, aiming to encode high-dimensional graph-structured data into low-dimensional vectors. Self-Supervised Learning (SSL) methods are widely used in GRL because they can avoid expensive human annotation. In this work, we propose a novel Subgraph Gaussian Embedding Contrast (SubGEC) method. Our approach introduces a subgraph Gaussian embedding module, which adaptively maps subgraphs to a structured Gaussian space, ensuring the preservation of input subgraph characteristics while generating subgraphs with a controlled distribution. We then employ optimal transport distances, more precisely the Wasserstein and Gromov-Wasserstein distances, to effectively measure the similarity between subgraphs, enhancing the robustness of the contrastive learning process. Extensive experiments across multiple benchmarks demonstrate that \method~outperforms or presents competitive performance against state-of-the-art approaches. Our findings provide insights into the design of SSL methods for GRL, emphasizing the importance of the distribution of the generated contrastive pairs.
- Abstract(参考訳): グラフ表現学習(GRL)は、高次元グラフ構造化データを低次元ベクトルに符号化することを目的とした機械学習の基本課題である。
自己監視学習(SSL)メソッドは、高価な人間のアノテーションを避けることができるため、GRLで広く使われている。
本研究では,新しいSubgraph Gaussian Embedding Contrast (SubGEC)法を提案する。
提案手法では,サブグラフをガウス空間に適応的にマッピングし,制御された分布を持つサブグラフを生成しながら,入力サブグラフ特性の保存を保証するサブグラフガウス埋め込みモジュールを提案する。
次に、より正確にはワッサーシュタインとグロモフ=ワッサーシュタインの距離という最適な輸送距離を用いて、グラフ間の類似性を効果的に測定し、対照的な学習過程の堅牢性を高める。
複数のベンチマークにわたる大規模な実験では、‘method〜outperforms’は最先端のアプローチに対する競合性能を示す。
本研究は,生成したコントラッシブペアの分散の重要性を強調し,GRLのためのSSLメソッドの設計に関する知見を提供する。
関連論文リスト
- SOLA-GCL: Subgraph-Oriented Learnable Augmentation Method for Graph Contrastive Learning [24.649741877466447]
グラフコントラスト学習のための新たなサブグラフ指向学習能力向上手法SOLA-GCLを提案する。
SOLA-GCLは、グラフをその固有の性質に基づいて複数の密連結な部分グラフに分割する。
グラフビュー生成器は、各サブグラフに対する拡張戦略を最適化し、グラフコントラスト学習のための調整されたビューを生成する。
論文 参考訳(メタデータ) (2025-03-13T06:52:39Z) - Variational Graph Contrastive Learning [1.9950682531209158]
グラフ表現学習(GRL)は、高次元グラフ構造化データを低次元ベクトルに符号化することを目的とした機械学習の基本課題である。
本研究では,SGEC(Subgraph Gaussian Embedding Contrast)法を提案する。
論文 参考訳(メタデータ) (2024-11-11T17:23:07Z) - LAMP: Learnable Meta-Path Guided Adversarial Contrastive Learning for Heterogeneous Graphs [22.322402072526927]
Heterogeneous Graph Contrastive Learning (HGCL)は通常、事前に定義されたメタパスを必要とする。
textsfLAMPは様々なメタパスのサブグラフを統一的で安定した構造に統合する。
textsfLAMPは、精度と堅牢性の観点から、既存の最先端の教師なしモデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2024-09-10T08:27:39Z) - Two Trades is not Baffled: Condensing Graph via Crafting Rational Gradient Matching [50.30124426442228]
大規模グラフの学習はグラフ表現学習において顕著な成果を上げてきたが、そのコストと記憶力の増大が懸念されている。
そこで我々は,textbfCraftextbfTing textbfRationatextbf (textbfCTRL) という新しいグラフ手法を提案する。
論文 参考訳(メタデータ) (2024-02-07T14:49:10Z) - Localized Contrastive Learning on Graphs [110.54606263711385]
局所グラフコントラスト学習(Local-GCL)という,シンプルだが効果的なコントラストモデルを導入する。
その単純さにもかかわらず、Local-GCLは、様々なスケールと特性を持つグラフ上の自己教師付きノード表現学習タスクにおいて、非常に競争力のある性能を達成する。
論文 参考訳(メタデータ) (2022-12-08T23:36:00Z) - Generative Subgraph Contrast for Self-Supervised Graph Representation
Learning [16.374143635724327]
本稿では, 適応部分グラフ生成をベースとした, 効率的かつ堅牢な自己教師付きグラフ表現学習のためのコントラスト学習フレームワークを提案する。
本研究の目的は,グラフの内在的構造を捕捉し,サブグラフの特徴と構造に基づいてサンプルを同時に識別することで,対照的なサンプルを生成することである。
論文 参考訳(メタデータ) (2022-07-25T09:08:46Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
グラフコントラスト学習(GCL)は、手作業によるアノテーションの監督なしに、グラフ表現学習(GRL)において有望な性能を示した。
本稿では,この課題に対処するため,グラフココというグラフ補完型コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2022-03-24T02:58:36Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
本稿では,複数のランダムアンカーグラフアンサンブル学習(RAGE)を用いた空間スペクトルHSI分類手法を提案する。
まず、各選択されたバンドのより記述的な特徴を抽出し、局所的な構造と領域の微妙な変化を保存するローカルバイナリパターンを採用する。
次に,アンカーグラフの構成に適応隣接代入を導入し,計算複雑性を低減した。
論文 参考訳(メタデータ) (2021-03-25T09:31:41Z) - Contrastive and Generative Graph Convolutional Networks for Graph-based
Semi-Supervised Learning [64.98816284854067]
グラフベースのSemi-Supervised Learning (SSL)は、少数のラベル付きデータのラベルをグラフ経由で残りの巨大なラベル付きデータに転送することを目的としている。
本稿では,データ類似性とグラフ構造を両立させ,監視信号の強化を図るため,新しいGCNベースのSSLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-09-15T13:59:28Z) - Embedding Graph Auto-Encoder for Graph Clustering [90.8576971748142]
グラフ自動エンコーダ(GAE)モデルは、半教師付きグラフ畳み込みネットワーク(GCN)に基づく
我々は、グラフクラスタリングのための特定のGAEベースのモデルを設計し、その理論、すなわち、埋め込みグラフオートエンコーダ(EGAE)と整合する。
EGAEは1つのエンコーダと2つのデコーダで構成される。
論文 参考訳(メタデータ) (2020-02-20T09:53:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。