論文の概要: CLaC at SemEval-2025 Task 6: A Multi-Architecture Approach for Corporate Environmental Promise Verification
- arxiv url: http://arxiv.org/abs/2505.23538v1
- Date: Thu, 29 May 2025 15:19:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-30 18:14:07.933324
- Title: CLaC at SemEval-2025 Task 6: A Multi-Architecture Approach for Corporate Environmental Promise Verification
- Title(参考訳): CLaC at SemEval-2025 Task 6: A Multi-Architecture Approach for Corporate Environmental Promise Verification
- Authors: Nawar Turk, Eeham Khan, Leila Kosseim,
- Abstract要約: 本稿では,企業ESG(環境・社会・ガバナンス)レポートにおける約束の検証に焦点を当てたSemEval-2025 Task6(PromiseEval)について述べる。
本研究では,3つのモデルアーキテクチャを探索し,確証評価,明確性評価,検証タイミングの4つのサブタスクに対処する。
本研究は,クラス不均衡や限られた訓練データによる課題にもかかわらず,言語的特徴抽出,注意プーリング,多目的学習の有効性を強調した。
- 参考スコア(独自算出の注目度): 0.20482269513546458
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper presents our approach to the SemEval-2025 Task~6 (PromiseEval), which focuses on verifying promises in corporate ESG (Environmental, Social, and Governance) reports. We explore three model architectures to address the four subtasks of promise identification, supporting evidence assessment, clarity evaluation, and verification timing. Our first model utilizes ESG-BERT with task-specific classifier heads, while our second model enhances this architecture with linguistic features tailored for each subtask. Our third approach implements a combined subtask model with attention-based sequence pooling, transformer representations augmented with document metadata, and multi-objective learning. Experiments on the English portion of the ML-Promise dataset demonstrate progressive improvement across our models, with our combined subtask approach achieving a leaderboard score of 0.5268, outperforming the provided baseline of 0.5227. Our work highlights the effectiveness of linguistic feature extraction, attention pooling, and multi-objective learning in promise verification tasks, despite challenges posed by class imbalance and limited training data.
- Abstract(参考訳): 本稿では、企業ESG(環境・社会・ガバナンス)レポートにおける約束の検証に焦点を当てたSemEval-2025 Task~6(PromiseEval)について述べる。
本研究では,3つのモデルアーキテクチャを探索し,確証評価,明確性評価,検証タイミングの4つのサブタスクに対処する。
第1モデルはタスク固有の分類器ヘッドを持つESG-BERTを使用し、第2モデルは各サブタスクに適した言語的特徴を持つこのアーキテクチャを強化する。
第3のアプローチでは、アテンションベースのシーケンスプーリング、文書メタデータを付加したトランスフォーマー表現、多目的学習を組み合わせたサブタスクモデルを実装している。
ML-Promiseデータセットの英語部分の実験は、我々のモデル全体で進歩的な改善を示しており、我々の組み合わせたサブタスクアプローチはリーダーボードスコア0.5268を達成し、提供されたベースライン0.5227を上回っている。
本研究は,クラス不均衡や限られた訓練データによる課題にもかかわらず,言語的特徴抽出,注意プーリング,多目的学習の有効性を強調した。
関連論文リスト
- Optimizing Multi-Task Learning for Enhanced Performance in Large Language Models [5.930799903736776]
提案したマルチタスク学習モデルは、テキスト分類精度と要約生成のROUGE値の観点から、他の比較モデルよりも優れている。
マルチタスク学習に基づくフレームワークは、分野横断の実践的応用において、より大きな役割を果たすことが期待されている。
論文 参考訳(メタデータ) (2024-12-09T06:47:42Z) - Exploiting Contextual Target Attributes for Target Sentiment
Classification [53.30511968323911]
TSCの既存のPTLMベースモデルは、1)PTLMをコンテキストエンコーダとして採用した微調整ベースモデル、2)テキスト/単語生成タスクに分類タスクを転送するプロンプトベースモデル、の2つのグループに分類される。
我々は,PTLM を TSC に活用する新たな視点として,言語モデリングと文脈的ターゲット属性による明示的ターゲットコンテキスト相互作用の利点を同時に活用する。
論文 参考訳(メタデータ) (2023-12-21T11:45:28Z) - Co-guiding for Multi-intent Spoken Language Understanding [53.30511968323911]
本稿では,2つのタスク間の相互指導を実現するための2段階のフレームワークを実装した,コガイドネットと呼ばれる新しいモデルを提案する。
第1段階では,単一タスクによる教師付きコントラスト学習を提案し,第2段階ではコガイドによる教師付きコントラスト学習を提案する。
マルチインテリジェントSLU実験の結果,我々のモデルは既存のモデルよりも大きなマージンで優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-22T08:06:22Z) - Multitask Multimodal Prompted Training for Interactive Embodied Task
Completion [48.69347134411864]
Embodied MultiModal Agent (EMMA) はエンコーダとデコーダの統一モデルである。
すべてのタスクをテキスト生成として統一することで、EMMAはタスク間の転送を容易にするアクション言語を学ぶ。
論文 参考訳(メタデータ) (2023-11-07T15:27:52Z) - Localizing Active Objects from Egocentric Vision with Symbolic World
Knowledge [62.981429762309226]
タスクの指示をエゴセントリックな視点から積極的に下す能力は、AIエージェントがタスクを達成したり、人間をバーチャルに支援する上で不可欠である。
本稿では,現在進行中のオブジェクトの役割を学習し,指示から正確に抽出することで,アクティブなオブジェクトをローカライズするフレーズグラウンドモデルの性能を向上させることを提案する。
Ego4DおよびEpic-Kitchensデータセットに関するフレームワークの評価を行った。
論文 参考訳(メタデータ) (2023-10-23T16:14:05Z) - A Multi-Task Semantic Decomposition Framework with Task-specific
Pre-training for Few-Shot NER [26.008350261239617]
マルチタスク・セマンティック・デコンストラクション・フレームワークを提案する。
本稿では,MLM(Demonstration-based Masked Language Modeling)とクラスコントラスト識別(Class Contrastive Discrimination)の2つの新しい事前学習タスクを紹介する。
下流のメインタスクでは,エンティティ分類のための2つの異なるセマンティック情報の統合を容易にするセマンティックデコンポーザリング手法を用いたマルチタスク共同最適化フレームワークを導入する。
論文 参考訳(メタデータ) (2023-08-28T12:46:21Z) - Effective Cross-Task Transfer Learning for Explainable Natural Language
Inference with T5 [50.574918785575655]
2つのタスクのパフォーマンス向上という文脈において、逐次微調整とマルチタスク学習のモデルを比較した。
この結果から,2つのタスクのうち,第1のタスクにおいて逐次マルチタスク学習は良好に調整できるが,第2のタスクでは性能が低下し,過度な適合に苦しむことが明らかとなった。
論文 参考訳(メタデータ) (2022-10-31T13:26:08Z) - FETA: A Benchmark for Few-Sample Task Transfer in Open-Domain Dialogue [70.65782786401257]
本研究は、オープンドメイン対話における少数サンプルタスク転送のベンチマークであるFETAを導入することにより、対話型タスク転送について検討する。
FETAには10タスクと7タスクがアノテートされた2つの基礎的な会話が含まれており、データセット内タスク転送の研究を可能にする。
3つの人気のある言語モデルと3つの学習アルゴリズムを用いて、132のソースターゲットタスクペア間の転送可能性を分析する。
論文 参考訳(メタデータ) (2022-05-12T17:59:00Z) - ZJUKLAB at SemEval-2021 Task 4: Negative Augmentation with Language
Model for Reading Comprehension of Abstract Meaning [16.151203366447962]
モデル学習に使用されるアルゴリズムとアルゴリズムをチューニングし、最良のモデルを選択するプロセスについて説明する。
ReCAMタスクと言語事前学習の類似性から着想を得て,言語モデルによる否定的拡張という,シンプルで効果的な技術を提案する。
我々のモデルは、それぞれ87.9%の精度と92.8%の精度で、Subtask 1とSubtask 2の2つの公式テストセットで4位に達した。
論文 参考訳(メタデータ) (2021-02-25T13:03:05Z) - LRG at SemEval-2021 Task 4: Improving Reading Comprehension with
Abstract Words using Augmentation, Linguistic Features and Voting [0.6850683267295249]
フィリングインザブランクタイプの質問を考えると、タスクは5つのオプションのリストから最適な単語を予測することです。
マスク付き言語モデリング(MLM)タスクで事前訓練されたトランスフォーマーベースのモデルのエンコーダを使用して、Fill-in-the-Blank(FitB)モデルを構築します。
本稿では,BERT の入力長制限に対処するため,チャンク投票や Max Context という変種を提案する。
論文 参考訳(メタデータ) (2021-02-24T12:33:12Z) - GUIR at SemEval-2020 Task 12: Domain-Tuned Contextualized Models for
Offensive Language Detection [27.45642971636561]
OffensEval 2020タスクには、攻撃的言語(Sub-task A)の存在の特定、攻撃的言語(Sub-task B)のターゲットの存在の特定、ターゲットのカテゴリ(Sub-task C)の識別の3つのサブタスクが含まれている。
サブタスクAのF1スコアは91.7%、サブタスクBの66.5%、サブタスクCの63.2%である。
論文 参考訳(メタデータ) (2020-07-28T20:45:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。