To Trust Or Not To Trust Your Vision-Language Model's Prediction
- URL: http://arxiv.org/abs/2505.23745v1
- Date: Thu, 29 May 2025 17:59:01 GMT
- Title: To Trust Or Not To Trust Your Vision-Language Model's Prediction
- Authors: Hao Dong, Moru Liu, Jian Liang, Eleni Chatzi, Olga Fink,
- Abstract summary: We introduce TrustVLM, a training-free framework designed to address the challenge of estimating when VLM's predictions can be trusted.<n>Motivated by the observed modality gap in VLMs, we propose a novel confidence-scoring function that leverages this space to improve misclassification detection.<n>We rigorously evaluate our approach across 17 diverse datasets, employing 4 architectures and 2 VLMs, and demonstrate state-of-the-art performance.
- Score: 37.90196640800147
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision-Language Models (VLMs) have demonstrated strong capabilities in aligning visual and textual modalities, enabling a wide range of applications in multimodal understanding and generation. While they excel in zero-shot and transfer learning scenarios, VLMs remain susceptible to misclassification, often yielding confident yet incorrect predictions. This limitation poses a significant risk in safety-critical domains, where erroneous predictions can lead to severe consequences. In this work, we introduce TrustVLM, a training-free framework designed to address the critical challenge of estimating when VLM's predictions can be trusted. Motivated by the observed modality gap in VLMs and the insight that certain concepts are more distinctly represented in the image embedding space, we propose a novel confidence-scoring function that leverages this space to improve misclassification detection. We rigorously evaluate our approach across 17 diverse datasets, employing 4 architectures and 2 VLMs, and demonstrate state-of-the-art performance, with improvements of up to 51.87% in AURC, 9.14% in AUROC, and 32.42% in FPR95 compared to existing baselines. By improving the reliability of the model without requiring retraining, TrustVLM paves the way for safer deployment of VLMs in real-world applications. The code will be available at https://github.com/EPFL-IMOS/TrustVLM.
Related papers
- Understanding and Benchmarking the Trustworthiness in Multimodal LLMs for Video Understanding [59.50808215134678]
This study introduces Trust-videoLLMs, a first comprehensive benchmark evaluating 23 state-of-the-art videoLLMs.<n>Results reveal significant limitations in dynamic scene comprehension, cross-modal resilience and real-world risk mitigation.
arXiv Detail & Related papers (2025-06-14T04:04:54Z) - Seeing is Believing, but How Much? A Comprehensive Analysis of Verbalized Calibration in Vision-Language Models [15.158475816860427]
Uncertainty is essential for assessing the reliability and trustworthiness of modern AI systems.<n> verbalized uncertainty, where models express their confidence through natural language, has emerged as a lightweight and interpretable solution.<n>However, its effectiveness in vision-language models (VLMs) remains insufficiently studied.
arXiv Detail & Related papers (2025-05-26T17:16:36Z) - Object-Level Verbalized Confidence Calibration in Vision-Language Models via Semantic Perturbation [26.580361841501514]
Vision-language models (VLMs) excel in various multimodal tasks but frequently suffer from poor calibration.<n>This miscalibration undermines user trust, especially when models confidently provide incorrect or fabricated information.<n>We propose a novel Confidence through Semantic Perturbation (CSP) framework to improve the calibration of verbalized confidence for object-centric queries.
arXiv Detail & Related papers (2025-04-21T04:01:22Z) - REVAL: A Comprehension Evaluation on Reliability and Values of Large Vision-Language Models [59.445672459851274]
REVAL is a comprehensive benchmark designed to evaluate the textbfREliability and textbfVALue of Large Vision-Language Models.<n>REVAL encompasses over 144K image-text Visual Question Answering (VQA) samples, structured into two primary sections: Reliability and Values.<n>We evaluate 26 models, including mainstream open-source LVLMs and prominent closed-source models like GPT-4o and Gemini-1.5-Pro.
arXiv Detail & Related papers (2025-03-20T07:54:35Z) - Are VLMs Ready for Autonomous Driving? An Empirical Study from the Reliability, Data, and Metric Perspectives [56.528835143531694]
We introduce DriveBench, a benchmark dataset designed to evaluate Vision-Language Models (VLMs)<n>Our findings reveal that VLMs often generate plausible responses derived from general knowledge or textual cues rather than true visual grounding.<n>We propose refined evaluation metrics that prioritize robust visual grounding and multi-modal understanding.
arXiv Detail & Related papers (2025-01-07T18:59:55Z) - Retention Score: Quantifying Jailbreak Risks for Vision Language Models [60.48306899271866]
Vision-Language Models (VLMs) are integrated with Large Language Models (LLMs) to enhance multi-modal machine learning capabilities.<n>This paper aims to assess the resilience of VLMs against jailbreak attacks that can compromise model safety compliance and result in harmful outputs.<n>To evaluate a VLM's ability to maintain its robustness against adversarial input perturbations, we propose a novel metric called the textbfRetention Score.
arXiv Detail & Related papers (2024-12-23T13:05:51Z) - Test-Time Fairness and Robustness in Large Language Models [17.758735680493917]
Frontier Large Language Models (LLMs) can be socially discriminatory or sensitive to spurious features of their inputs.
Existing solutions, which instruct the LLM to be fair or robust, rely on the model's implicit understanding of bias.
We show that our prompting strategy, unlike implicit instructions, consistently reduces the bias of frontier LLMs.
arXiv Detail & Related papers (2024-06-11T20:05:15Z) - Overconfidence is Key: Verbalized Uncertainty Evaluation in Large Language and Vision-Language Models [6.9060054915724]
Language and Vision-Language Models (LLMs/VLMs) have revolutionized the field of AI by their ability to generate human-like text and understand images, but ensuring their reliability is crucial.
This paper aims to evaluate the ability of LLMs (GPT4, GPT-3.5, LLaMA2, and PaLM 2) and VLMs (GPT4V and Gemini Pro Vision) to estimate their verbalized uncertainty via prompting.
We propose the new Japanese Uncertain Scenes dataset aimed at testing VLM capabilities via difficult queries and object counting, and the Net Error dataset to measure direction of miscalibration.
arXiv Detail & Related papers (2024-05-05T12:51:38Z) - On Evaluating Adversarial Robustness of Large Vision-Language Models [64.66104342002882]
We evaluate the robustness of large vision-language models (VLMs) in the most realistic and high-risk setting.
In particular, we first craft targeted adversarial examples against pretrained models such as CLIP and BLIP.
Black-box queries on these VLMs can further improve the effectiveness of targeted evasion.
arXiv Detail & Related papers (2023-05-26T13:49:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.