Spatial-MLLM: Boosting MLLM Capabilities in Visual-based Spatial Intelligence
- URL: http://arxiv.org/abs/2505.23747v1
- Date: Thu, 29 May 2025 17:59:04 GMT
- Title: Spatial-MLLM: Boosting MLLM Capabilities in Visual-based Spatial Intelligence
- Authors: Diankun Wu, Fangfu Liu, Yi-Hsin Hung, Yueqi Duan,
- Abstract summary: We present Spatial-MLLM, a novel framework for visual-based spatial reasoning from purely 2D observations.<n>Our key insight is to unleash the strong structure prior to the feed-forward visual geometry foundation model.<n>A connector then integrates both features into unified visual tokens for enhanced spatial understanding.
- Score: 13.168559963356952
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in Multimodal Large Language Models (MLLMs) have significantly enhanced performance on 2D visual tasks. However, improving their spatial intelligence remains a challenge. Existing 3D MLLMs always rely on additional 3D or 2.5D data to incorporate spatial awareness, restricting their utility in scenarios with only 2D inputs, such as images or videos. In this paper, we present Spatial-MLLM, a novel framework for visual-based spatial reasoning from purely 2D observations. Unlike conventional video MLLMs which rely on CLIP-based visual encoders optimized for semantic understanding, our key insight is to unleash the strong structure prior from the feed-forward visual geometry foundation model. Specifically, we propose a dual-encoder architecture: a pretrained 2D visual encoder to extract semantic features, and a spatial encoder-initialized from the backbone of the visual geometry model-to extract 3D structure features. A connector then integrates both features into unified visual tokens for enhanced spatial understanding. Furthermore, we propose a space-aware frame sampling strategy at inference time, which selects the spatially informative frames of a video sequence, ensuring that even under limited token length, the model focuses on frames critical for spatial reasoning. Beyond architecture improvements, we construct the Spatial-MLLM-120k dataset and train the model on it using supervised fine-tuning and GRPO. Extensive experiments on various real-world datasets demonstrate that our spatial-MLLM achieves state-of-the-art performance in a wide range of visual-based spatial understanding and reasoning tasks. Project page: https://diankun-wu.github.io/Spatial-MLLM/.
Related papers
- VLM-3R: Vision-Language Models Augmented with Instruction-Aligned 3D Reconstruction [86.82819259860186]
We introduce VLM-3R, a unified framework for Vision-Language Models (VLMs) that incorporates 3D Reconstructive instruction tuning.<n>VLM-3R processes monocular video frames by employing a geometry encoder to derive implicit 3D tokens that represent spatial understanding.
arXiv Detail & Related papers (2025-05-26T17:56:30Z) - Agentic 3D Scene Generation with Spatially Contextualized VLMs [67.31920821192323]
We introduce a new paradigm that enables vision-language models to generate, understand, and edit complex 3D environments.<n>We develop an agentic 3D scene generation pipeline in which the VLM iteratively reads from and updates the spatial context.<n>Results show that our framework can handle diverse and challenging inputs, achieving a level of generalization not observed in prior work.
arXiv Detail & Related papers (2025-05-26T15:28:17Z) - From Flatland to Space: Teaching Vision-Language Models to Perceive and Reason in 3D [32.547597353581594]
We introduce a novel 2D spatial data generation and annotation pipeline built upon scene data with 3D ground-truth.<n>We construct SPAR-7M, a large-scale dataset generated from thousands of scenes across multiple public datasets.<n>In addition, we introduce SPAR-Bench, a benchmark designed to offer a more comprehensive evaluation of spatial capabilities.
arXiv Detail & Related papers (2025-03-29T04:51:50Z) - MLLM-For3D: Adapting Multimodal Large Language Model for 3D Reasoning Segmentation [87.30919771444117]
Reasoning segmentation aims to segment target objects in complex scenes based on human intent and spatial reasoning.<n>Recent multimodal large language models (MLLMs) have demonstrated impressive 2D image reasoning segmentation.<n>We introduce MLLM-For3D, a framework that transfers knowledge from 2D MLLMs to 3D scene understanding.
arXiv Detail & Related papers (2025-03-23T16:40:20Z) - MM-Spatial: Exploring 3D Spatial Understanding in Multimodal LLMs [13.678235444299286]
Multimodal large language models (MLLMs) excel at 2D visual understanding but remain limited in their ability to reason about 3D space.<n>In this work, we leverage large-scale high-quality 3D scene data with open-set annotations to introduce 1) a novel supervised fine-tuning dataset and 2) a new evaluation benchmark, focused on indoor scenes.
arXiv Detail & Related papers (2025-03-17T12:34:22Z) - LayoutVLM: Differentiable Optimization of 3D Layout via Vision-Language Models [57.92316645992816]
Spatial reasoning is a fundamental aspect of human cognition, enabling intuitive understanding and manipulation of objects in three-dimensional space.<n>We introduce LayoutVLM, a framework and scene layout representation that exploits the semantic knowledge of Vision-Language Models (VLMs)<n>We demonstrate that fine-tuning VLMs with the proposed scene layout representation extracted from existing scene datasets can improve their reasoning performance.
arXiv Detail & Related papers (2024-12-03T06:15:04Z) - Video-3D LLM: Learning Position-Aware Video Representation for 3D Scene Understanding [19.382210260928776]
Video-3D LLM treats 3D scenes as dynamic videos and incorporates 3D position encoding into these representations.<n>Our model achieves state-of-the-art performance on several 3D scene understanding benchmarks.
arXiv Detail & Related papers (2024-11-30T14:28:53Z) - LLMI3D: MLLM-based 3D Perception from a Single 2D Image [77.13869413871028]
multimodal large language models (MLLMs) excel in general capacity but underperform in 3D tasks.<n>In this paper, we propose solutions for weak 3D local spatial object perception, poor text-based geometric numerical output, and inability to handle camera focal variations.<n>We employ parameter-efficient fine-tuning for a pre-trained MLLM and develop LLMI3D, a powerful 3D perception MLLM.
arXiv Detail & Related papers (2024-08-14T10:00:16Z) - Coarse Correspondences Boost Spatial-Temporal Reasoning in Multimodal Language Model [51.83436609094658]
We introduce Coarse Correspondences, a simple lightweight method that enhances MLLMs' spatial-temporal reasoning with 2D images as input.
Our method uses a lightweight tracking model to identify primary object correspondences between frames in a video or across different image viewpoints.
We demonstrate that this simple training-free approach brings substantial gains to GPT4-V/O consistently on four benchmarks.
arXiv Detail & Related papers (2024-08-01T17:57:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.