Coarse Correspondences Boost Spatial-Temporal Reasoning in Multimodal Language Model
- URL: http://arxiv.org/abs/2408.00754v2
- Date: Thu, 21 Nov 2024 18:52:31 GMT
- Title: Coarse Correspondences Boost Spatial-Temporal Reasoning in Multimodal Language Model
- Authors: Benlin Liu, Yuhao Dong, Yiqin Wang, Zixian Ma, Yansong Tang, Luming Tang, Yongming Rao, Wei-Chiu Ma, Ranjay Krishna,
- Abstract summary: We introduce Coarse Correspondences, a simple lightweight method that enhances MLLMs' spatial-temporal reasoning with 2D images as input.
Our method uses a lightweight tracking model to identify primary object correspondences between frames in a video or across different image viewpoints.
We demonstrate that this simple training-free approach brings substantial gains to GPT4-V/O consistently on four benchmarks.
- Score: 51.83436609094658
- License:
- Abstract: Multimodal language models (MLLMs) are increasingly being applied in real-world environments, necessitating their ability to interpret 3D spaces and comprehend temporal dynamics. Current methods often rely on specialized architectural designs or task-specific fine-tuning to achieve this. We introduce Coarse Correspondences, a simple lightweight method that enhances MLLMs' spatial-temporal reasoning with 2D images as input, without modifying the architecture or requiring task-specific fine-tuning. Our method uses a lightweight tracking model to identify primary object correspondences between frames in a video or across different image viewpoints, and then conveys this information to MLLMs through visual prompting. We demonstrate that this simple training-free approach brings substantial gains to GPT4-V/O consistently on four benchmarks that require spatial-temporal reasoning, including +20.5\% improvement on ScanQA, +9.7\% on OpenEQA's episodic memory subset, +6.0\% on the long-form video benchmark EgoSchema, and +11\% on the R2R navigation benchmark. Additionally, we show that Coarse Correspondences can also enhance open-source MLLMs' spatial reasoning (by +6.9\% on ScanQA) when applied in both training and inference and that the improvement can generalize to unseen datasets such as SQA3D (+3.1\%). Taken together, we show that Coarse Correspondences effectively and efficiently boosts models' performance on downstream tasks requiring spatial-temporal reasoning.
Related papers
- Efficient Transfer Learning for Video-language Foundation Models [13.166348605993292]
We propose a simple yet effective Multi-modal Spatio-supervised (MSTA) to improve the alignment between representations in the text and vision branches.
We evaluate the effectiveness of our approach across four tasks: zero-shot transfer, few-shot learning, base-to-valiant, and fully-language learning.
arXiv Detail & Related papers (2024-11-18T01:25:58Z) - Large Spatial Model: End-to-end Unposed Images to Semantic 3D [79.94479633598102]
Large Spatial Model (LSM) processes unposed RGB images directly into semantic radiance fields.
LSM simultaneously estimates geometry, appearance, and semantics in a single feed-forward operation.
It can generate versatile label maps by interacting with language at novel viewpoints.
arXiv Detail & Related papers (2024-10-24T17:54:42Z) - TC-LLaVA: Rethinking the Transfer from Image to Video Understanding with Temporal Considerations [23.188508465235717]
We propose two strategies to enhance the model's capability in video understanding tasks.
The first approach focuses on the enhancement of Rotary Position Embedding (RoPE) with Temporal-Aware Dual RoPE.
The second approach involves enhancing the Attention Mask with the Frame-wise Block Causal Attention Mask.
arXiv Detail & Related papers (2024-09-05T02:54:17Z) - REVISION: Rendering Tools Enable Spatial Fidelity in Vision-Language Models [67.55362046790512]
Vision-language models lack the ability to correctly reason over spatial relationships.
We develop the REVISION framework which improves spatial fidelity in vision-language models.
Our results and findings indicate that utilizing rendering-based frameworks is an effective approach for developing spatially-aware models.
arXiv Detail & Related papers (2024-08-05T04:51:46Z) - Hierarchical Temporal Context Learning for Camera-based Semantic Scene Completion [57.232688209606515]
We present HTCL, a novel Temporal Temporal Context Learning paradigm for improving camera-based semantic scene completion.
Our method ranks $1st$ on the Semantic KITTI benchmark and even surpasses LiDAR-based methods in terms of mIoU.
arXiv Detail & Related papers (2024-07-02T09:11:17Z) - Deciphering Movement: Unified Trajectory Generation Model for Multi-Agent [53.637837706712794]
We propose a Unified Trajectory Generation model, UniTraj, that processes arbitrary trajectories as masked inputs.
Specifically, we introduce a Ghost Spatial Masking (GSM) module embedded within a Transformer encoder for spatial feature extraction.
We benchmark three practical sports game datasets, Basketball-U, Football-U, and Soccer-U, for evaluation.
arXiv Detail & Related papers (2024-05-27T22:15:23Z) - ST-LLM: Large Language Models Are Effective Temporal Learners [58.79456373423189]
Large Language Models (LLMs) have showcased impressive capabilities in text comprehension and generation.
How to effectively encode and understand videos in video-based dialogue systems remains to be solved.
We propose ST-LLM, an effective video-LLM baseline with spatial-temporal sequence modeling inside LLM.
arXiv Detail & Related papers (2024-03-30T10:11:26Z) - Comparison of Spatiotemporal Networks for Learning Video Related Tasks [0.0]
Many methods for learning from sequences involve temporally processing 2D CNN features from the individual frames or directly utilizing 3D convolutions within high-performing 2D CNN architectures.
This work constructs an MNIST-based video dataset with parameters controlling relevant facets of common video-related tasks: classification, ordering, and speed estimation.
Models trained on this dataset are shown to differ in key ways depending on the task and their use of 2D convolutions, 3D convolutions, or convolutional LSTMs.
arXiv Detail & Related papers (2020-09-15T19:57:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.