Evaluating Query Efficiency and Accuracy of Transfer Learning-based Model Extraction Attack in Federated Learning
- URL: http://arxiv.org/abs/2505.23791v1
- Date: Sun, 25 May 2025 22:40:10 GMT
- Title: Evaluating Query Efficiency and Accuracy of Transfer Learning-based Model Extraction Attack in Federated Learning
- Authors: Sayyed Farid Ahamed, Sandip Roy, Soumya Banerjee, Marc Vucovich, Kevin Choi, Abdul Rahman, Alison Hu, Edward Bowen, Sachin Shetty,
- Abstract summary: Federated Learning (FL) is a collaborative learning framework designed to protect client data.<n>Despite FL's privacy-preserving goals, its distributed nature makes it particularly susceptible to model extraction attacks.<n>This paper examines the vulnerability of FL-based victim models to two types of model extraction attacks.
- Score: 4.275908952997288
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) is a collaborative learning framework designed to protect client data, yet it remains highly vulnerable to Intellectual Property (IP) threats. Model extraction (ME) attacks pose a significant risk to Machine Learning as a Service (MLaaS) platforms, enabling attackers to replicate confidential models by querying black-box (without internal insight) APIs. Despite FL's privacy-preserving goals, its distributed nature makes it particularly susceptible to such attacks. This paper examines the vulnerability of FL-based victim models to two types of model extraction attacks. For various federated clients built under the NVFlare platform, we implemented ME attacks across two deep learning architectures and three image datasets. We evaluate the proposed ME attack performance using various metrics, including accuracy, fidelity, and KL divergence. The experiments show that for different FL clients, the accuracy and fidelity of the extracted model are closely related to the size of the attack query set. Additionally, we explore a transfer learning based approach where pretrained models serve as the starting point for the extraction process. The results indicate that the accuracy and fidelity of the fine-tuned pretrained extraction models are notably higher, particularly with smaller query sets, highlighting potential advantages for attackers.
Related papers
- Exploiting Edge Features for Transferable Adversarial Attacks in Distributed Machine Learning [54.26807397329468]
This work explores a previously overlooked vulnerability in distributed deep learning systems.<n>An adversary who intercepts the intermediate features transmitted between them can still pose a serious threat.<n>We propose an exploitation strategy specifically designed for distributed settings.
arXiv Detail & Related papers (2025-07-09T20:09:00Z) - Attribute Inference Attacks for Federated Regression Tasks [14.152503562997662]
Federated Learning (FL) enables clients to collaboratively train a global machine learning model while keeping their data localized.<n>Recent studies have revealed that the training phase of FL is vulnerable to reconstruction attacks.<n>We propose novel model-based AIAs specifically designed for regression tasks in FL environments.
arXiv Detail & Related papers (2024-11-19T18:06:06Z) - Identify Backdoored Model in Federated Learning via Individual Unlearning [7.200910949076064]
Backdoor attacks present a significant threat to the robustness of Federated Learning (FL)
We propose MASA, a method that utilizes individual unlearning on local models to identify malicious models in FL.
To the best of our knowledge, this is the first work to leverage machine unlearning to identify malicious models in FL.
arXiv Detail & Related papers (2024-11-01T21:19:47Z) - Multi-Model based Federated Learning Against Model Poisoning Attack: A Deep Learning Based Model Selection for MEC Systems [11.564289367348334]
Federated Learning (FL) enables training of a global model from distributed data, while preserving data privacy.
This paper proposes a multi-model based FL as a proactive mechanism to enhance the opportunity of model poisoning attack mitigation.
For a DDoS attack detection scenario, results illustrate a competitive accuracy gain under poisoning attack with the scenario that the system is without attack, and also a potential of recognition time improvement.
arXiv Detail & Related papers (2024-09-12T17:36:26Z) - MisGUIDE : Defense Against Data-Free Deep Learning Model Extraction [0.8437187555622164]
"MisGUIDE" is a two-step defense framework for Deep Learning models that disrupts the adversarial sample generation process.
The aim of the proposed defense method is to reduce the accuracy of the cloned model while maintaining accuracy on authentic queries.
arXiv Detail & Related papers (2024-03-27T13:59:21Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
Federated learning (FL) is susceptible to poisoning attacks.
FreqFed is a novel aggregation mechanism that transforms the model updates into the frequency domain.
We demonstrate that FreqFed can mitigate poisoning attacks effectively with a negligible impact on the utility of the aggregated model.
arXiv Detail & Related papers (2023-12-07T16:56:24Z) - Data-Agnostic Model Poisoning against Federated Learning: A Graph
Autoencoder Approach [65.2993866461477]
This paper proposes a data-agnostic, model poisoning attack on Federated Learning (FL)
The attack requires no knowledge of FL training data and achieves both effectiveness and undetectability.
Experiments show that the FL accuracy drops gradually under the proposed attack and existing defense mechanisms fail to detect it.
arXiv Detail & Related papers (2023-11-30T12:19:10Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
Federated Learning (FL) enables distributed participants to train a global model without sharing data directly to a central server.
Recent studies have revealed that FL is vulnerable to gradient inversion attack (GIA), which aims to reconstruct the original training samples.
We propose Client-side poisoning Gradient Inversion (CGI), which is a novel attack method that can be launched from clients.
arXiv Detail & Related papers (2023-09-14T03:48:27Z) - FL-Defender: Combating Targeted Attacks in Federated Learning [7.152674461313707]
Federated learning (FL) enables learning a global machine learning model from local data distributed among a set of participating workers.
FL is vulnerable to targeted poisoning attacks that negatively impact the integrity of the learned model.
We propose textitFL-Defender as a method to combat FL targeted attacks.
arXiv Detail & Related papers (2022-07-02T16:04:46Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
Federated Learning allows a large number of clients to train a joint model without the need to share their private data.
To ensure the confidentiality of the client updates, Federated Learning systems employ secure aggregation.
We present RoFL, a secure Federated Learning system that improves robustness against malicious clients.
arXiv Detail & Related papers (2021-07-07T15:42:49Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning (FL) has become a promising tool for training effective machine learning models among distributed clients.
However, low quality models could be uploaded to the aggregator server by unreliable clients, leading to a degradation or even a collapse of training.
We model these unreliable behaviors of clients and propose a defensive mechanism to mitigate such a security risk.
arXiv Detail & Related papers (2021-05-10T08:02:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.