論文の概要: Scaling up the think-aloud method
- arxiv url: http://arxiv.org/abs/2505.23931v1
- Date: Thu, 29 May 2025 18:26:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-02 19:47:52.622673
- Title: Scaling up the think-aloud method
- Title(参考訳): Think-aloud メソッドのスケールアップ
- Authors: Daniel Wurgaft, Ben Prystawski, Kanishk Gandhi, Cedegao E. Zhang, Joshua B. Tenenbaum, Noah D. Goodman,
- Abstract要約: 本研究では,自然言語処理ツールを用いた推論の言語レポートの書き起こしとアノテーションの自動化手法を開発した。
本研究では、640人の参加者が、数学推論タスクであるGame of 24をプレイしながら声を上げた。
本研究は, 大規模思考情報の価値を実証し, 言論報告の自動分析のための概念実証として機能する。
- 参考スコア(独自算出の注目度): 63.91056664423141
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The think-aloud method, where participants voice their thoughts as they solve a task, is a valuable source of rich data about human reasoning processes. Yet, it has declined in popularity in contemporary cognitive science, largely because labor-intensive transcription and annotation preclude large sample sizes. Here, we develop methods to automate the transcription and annotation of verbal reports of reasoning using natural language processing tools, allowing for large-scale analysis of think-aloud data. In our study, 640 participants thought aloud while playing the Game of 24, a mathematical reasoning task. We automatically transcribed the recordings and coded the transcripts as search graphs, finding moderate inter-rater reliability with humans. We analyze these graphs and characterize consistency and variation in human reasoning traces. Our work demonstrates the value of think-aloud data at scale and serves as a proof of concept for the automated analysis of verbal reports.
- Abstract(参考訳): 課題解決時に参加者が意見を聞くシンク・アラウド法は、人間の推論プロセスに関する貴重なデータ源である。
しかし、労働集約的な転写とアノテーションが大きなサンプルサイズを妨げているため、現代の認知科学では人気が低下している。
そこで本稿では,自然言語処理ツールを用いた推論の言語レポートの書き起こしとアノテーションの自動生成手法を開発し,思考情報の分析を大規模に行う。
本研究では、640人の参加者が、数学的推論タスクであるGame of 24をプレイしながら声を上げた。
記録を自動で書き起こし,その書き起こしを検索グラフとして符号化した。
我々はこれらのグラフを分析し、人間の推論トレースにおける一貫性と変動を特徴付ける。
本研究は, 大規模思考情報の価値を実証し, 言論報告の自動分析のための概念実証として機能する。
関連論文リスト
- Acoustic and linguistic representations for speech continuous emotion
recognition in call center conversations [2.0653090022137697]
本稿では,AlloSat corpus へのトランスファー学習の一形態として,事前学習した音声表現の利用について検討する。
実験により,事前学習した特徴を用いて得られた性能の大きな向上を確認した。
驚いたことに、言語内容が満足度予測の主要な要因であることは明らかでした。
論文 参考訳(メタデータ) (2023-10-06T10:22:51Z) - Unsupervised Sentiment Analysis of Plastic Surgery Social Media Posts [91.3755431537592]
ソーシャルメディアプラットフォームにまたがる膨大なユーザー投稿は、主に人工知能(AI)のユースケースに使われていない。
自然言語処理(NLP)は、コーパス(corpora)として知られるドキュメントの体系を利用して、人間のような言語理解でコンピュータを訓練するAIのサブフィールドである。
本研究は, 教師なし解析の応用により, コンピュータがプラスティック手術に対する否定的, 肯定的, 中立的なユーザ感情を予測できることを示した。
論文 参考訳(メタデータ) (2023-07-05T20:16:20Z) - Using Natural Language Explanations to Rescale Human Judgments [81.66697572357477]
大規模言語モデル(LLM)を用いて順序付けアノテーションと説明を再スケールする手法を提案する。
我々は、アノテータのLikert評価とそれに対応する説明をLLMに入力し、スコア付けルーリックに固定された数値スコアを生成する。
提案手法は,合意に影響を及ぼさずに生の判断を再スケールし,そのスコアを同一のスコア付けルーリックに接する人間の判断に近づける。
論文 参考訳(メタデータ) (2023-05-24T06:19:14Z) - Saliency Map Verbalization: Comparing Feature Importance Representations
from Model-free and Instruction-based Methods [6.018950511093273]
サージェンシマップは、重要な入力特徴を特定することによって、ニューラルネットワークの予測を説明することができる。
我々は,サリエンシマップを自然言語に翻訳する未調査課題を定式化する。
本研究では,従来の特徴強調表現と比較した2つの新手法(検索ベースおよび命令ベース言語化)を比較した。
論文 参考訳(メタデータ) (2022-10-13T17:48:15Z) - Decoding speech perception from non-invasive brain recordings [48.46819575538446]
非侵襲的な記録から知覚音声の自己教師付き表現をデコードするために、コントラスト学習で訓練されたモデルを導入する。
我々のモデルでは、3秒のMEG信号から、1,000以上の異なる可能性から最大41%の精度で対応する音声セグメントを識別できる。
論文 参考訳(メタデータ) (2022-08-25T10:01:43Z) - Self-Supervised Speech Representation Learning: A Review [105.1545308184483]
自己教師付き表現学習法は、幅広いタスクやドメインに利益をもたらす単一の普遍的モデルを約束する。
音声表現学習は、生成的、コントラスト的、予測的という3つの主要なカテゴリで同様の進歩を経験している。
本稿では,自己指導型音声表現学習のアプローチと,他の研究領域との関係について述べる。
論文 参考訳(メタデータ) (2022-05-21T16:52:57Z) - Improving speaker de-identification with functional data analysis of f0
trajectories [10.809893662563926]
フォーマント修正は、訓練データを必要としない話者識別のための、シンプルで効果的な方法である。
本研究は, 簡易な定式化シフトに加えて, 関数データ解析に基づくf0トラジェクトリを操作する新しい話者識別手法を提案する。
提案手法は,音素的に制御可能なピッチ特性を最適に識別し,フォルマントに基づく話者識別を最大25%改善する。
論文 参考訳(メタデータ) (2022-03-31T01:34:15Z) - A combined approach to the analysis of speech conversations in a contact
center domain [2.575030923243061]
本稿では, インバウンドフローやアウトバウンドフローから抽出した通話記録を扱う, イタリアのコンタクトセンターにおける音声分析プロセスの実験について述べる。
まず,Kaldi フレームワークをベースとした社内音声合成ソリューションの開発について詳述する。
そこで我々は,コールトランスクリプトのセマンティックタグ付けに対する異なるアプローチの評価と比較を行った。
最後に、タグ付け問題にJ48Sと呼ばれる決定木インデューサを適用する。
論文 参考訳(メタデータ) (2022-03-12T10:03:20Z) - Leveraging Pre-trained Language Model for Speech Sentiment Analysis [58.78839114092951]
本研究では、事前学習された言語モデルを用いて、文章の感情情報を学習し、音声の感情分析を行う。
本稿では,言語モデルを用いた擬似ラベルに基づく半教師付き訓練戦略を提案する。
論文 参考訳(メタデータ) (2021-06-11T20:15:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。