Searching Neural Architectures for Sensor Nodes on IoT Gateways
- URL: http://arxiv.org/abs/2505.23939v1
- Date: Thu, 29 May 2025 18:42:25 GMT
- Title: Searching Neural Architectures for Sensor Nodes on IoT Gateways
- Authors: Andrea Mattia Garavagno, Edoardo Ragusa, Antonio Frisoli, Paolo Gastaldo,
- Abstract summary: This paper presents an automatic method for the design of Neural Networks (NNs) at the edge, enabling Machine Learning (ML) access even in privacy-sensitive Internet of Things (IoT) applications.<n>The proposed method runs on IoT gateways and designs NNs for connected sensor nodes without sharing the collected data outside the local network.<n>By preventing data from being disclosed to cloud services, this method safeguards sensitive information, including industrial secrets and personal data.
- Score: 2.640839704909738
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents an automatic method for the design of Neural Networks (NNs) at the edge, enabling Machine Learning (ML) access even in privacy-sensitive Internet of Things (IoT) applications. The proposed method runs on IoT gateways and designs NNs for connected sensor nodes without sharing the collected data outside the local network, keeping the data in the site of collection. This approach has the potential to enable ML for Healthcare Internet of Things (HIoT) and Industrial Internet of Things (IIoT), designing hardware-friendly and custom NNs at the edge for personalized healthcare and advanced industrial services such as quality control, predictive maintenance, or fault diagnosis. By preventing data from being disclosed to cloud services, this method safeguards sensitive information, including industrial secrets and personal data. The outcomes of a thorough experimental session confirm that -- on the Visual Wake Words dataset -- the proposed approach can achieve state-of-the-art results by exploiting a search procedure that runs in less than 10 hours on the Raspberry Pi Zero 2.
Related papers
- NNsight and NDIF: Democratizing Access to Open-Weight Foundation Model Internals [58.83169560132308]
We introduce NNsight and NDIF, technologies that work in tandem to enable scientific study of the representations and computations learned by very large neural networks.
arXiv Detail & Related papers (2024-07-18T17:59:01Z) - KiNETGAN: Enabling Distributed Network Intrusion Detection through Knowledge-Infused Synthetic Data Generation [0.0]
We propose a knowledge-infused Generative Adversarial Network for generating synthetic network activity data (KiNETGAN)
Our approach enhances the resilience of distributed intrusion detection while addressing privacy concerns.
arXiv Detail & Related papers (2024-05-26T08:02:02Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Graph Neural Networks with Trainable Adjacency Matrices for Fault
Diagnosis on Multivariate Sensor Data [69.25738064847175]
It is necessary to consider the behavior of the signals in each sensor separately, to take into account their correlation and hidden relationships with each other.
The graph nodes can be represented as data from the different sensors, and the edges can display the influence of these data on each other.
It was proposed to construct a graph during the training of graph neural network. This allows to train models on data where the dependencies between the sensors are not known in advance.
arXiv Detail & Related papers (2022-10-20T11:03:21Z) - Graph Neural Networks in IoT: A Survey [9.257834364029547]
The Internet of Things (IoT) boom has revolutionized almost every corner of people's daily lives.
Deep learning models have been extensively employed in solving IoT tasks.
Graph Neural Networks (GNNs) have been demonstrated to achieve state-of-the-art results in numerous IoT learning tasks.
arXiv Detail & Related papers (2022-03-29T22:27:59Z) - Deep Reinforcement Learning Assisted Federated Learning Algorithm for
Data Management of IIoT [82.33080550378068]
The continuous expanded scale of the industrial Internet of Things (IIoT) leads to IIoT equipments generating massive amounts of user data every moment.
How to manage these time series data in an efficient and safe way in the field of IIoT is still an open issue.
This paper studies the FL technology applications to manage IIoT equipment data in wireless network environments.
arXiv Detail & Related papers (2022-02-03T07:12:36Z) - An Automated Data Engineering Pipeline for Anomaly Detection of IoT
Sensor Data [0.0]
System of Chip technology, Internet of Things (IoT), cloud computing, and artificial intelligence has brought more possibilities of improving and solving the current problems.
Data analytics and the use of machine learning/deep learning makes it possible to learn the underlying patterns and make decisions based on what was learned from massive data generated from IoT sensors.
Process involves the use of IoT sensors, Raspberry Pis, Amazon Web Services (AWS) and multiple machine learning techniques with the intent to identify anomalous cases for the smart home security system.
arXiv Detail & Related papers (2021-09-28T15:57:29Z) - Federated Learning for Internet of Things: A Federated Learning
Framework for On-device Anomaly Data Detection [10.232121085973782]
We build a FedIoT platform that contains a synthesized dataset using N-BaIoT, FedDetect algorithm, and a system design for IoT devices.
In a network of realistic IoT devices (PI), we evaluate FedIoT platform and FedDetect algorithm in both model and system performance.
arXiv Detail & Related papers (2021-06-15T08:53:42Z) - The Internet of Things as a Deep Neural Network [16.78220721167574]
This article proposes to model the measurement compression at IoT nodes and the inference at the base station or cloud as a deep neural network (DNN)
We show how to learn the model parameters of the DNN and study the trade-off between the communication rate and the inference accuracy.
Our findings have the potentiality to enable many new IoT data analysis applications generating large amount of measurements.
arXiv Detail & Related papers (2020-03-23T20:36:16Z) - CryptoSPN: Privacy-preserving Sum-Product Network Inference [84.88362774693914]
We present a framework for privacy-preserving inference of sum-product networks (SPNs)
CryptoSPN achieves highly efficient and accurate inference in the order of seconds for medium-sized SPNs.
arXiv Detail & Related papers (2020-02-03T14:49:18Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.