Is Your Model Fairly Certain? Uncertainty-Aware Fairness Evaluation for LLMs
- URL: http://arxiv.org/abs/2505.23996v1
- Date: Thu, 29 May 2025 20:45:18 GMT
- Title: Is Your Model Fairly Certain? Uncertainty-Aware Fairness Evaluation for LLMs
- Authors: Yinong Oliver Wang, Nivedha Sivakumar, Falaah Arif Khan, Rin Metcalf Susa, Adam Golinski, Natalie Mackraz, Barry-John Theobald, Luca Zappella, Nicholas Apostoloff,
- Abstract summary: We propose an uncertainty-aware fairness metric, UCerF, to enable a fine-grained evaluation of model fairness.<n> observing data size, diversity, and clarity issues in current datasets, we introduce a new gender-occupation fairness evaluation dataset.<n>We establish a benchmark, using our metric and dataset, and apply it to evaluate the behavior of ten open-source AI systems.
- Score: 7.197702136906138
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent rapid adoption of large language models (LLMs) highlights the critical need for benchmarking their fairness. Conventional fairness metrics, which focus on discrete accuracy-based evaluations (i.e., prediction correctness), fail to capture the implicit impact of model uncertainty (e.g., higher model confidence about one group over another despite similar accuracy). To address this limitation, we propose an uncertainty-aware fairness metric, UCerF, to enable a fine-grained evaluation of model fairness that is more reflective of the internal bias in model decisions compared to conventional fairness measures. Furthermore, observing data size, diversity, and clarity issues in current datasets, we introduce a new gender-occupation fairness evaluation dataset with 31,756 samples for co-reference resolution, offering a more diverse and suitable dataset for evaluating modern LLMs. We establish a benchmark, using our metric and dataset, and apply it to evaluate the behavior of ten open-source LLMs. For example, Mistral-7B exhibits suboptimal fairness due to high confidence in incorrect predictions, a detail overlooked by Equalized Odds but captured by UCerF. Overall, our proposed LLM benchmark, which evaluates fairness with uncertainty awareness, paves the way for developing more transparent and accountable AI systems.
Related papers
- Assessing Judging Bias in Large Reasoning Models: An Empirical Study [99.86300466350013]
Large Reasoning Models (LRMs) like DeepSeek-R1 and OpenAI-o1 have demonstrated remarkable reasoning capabilities.<n>We present a benchmark comparing judging biases between LLMs and LRMs across both subjective preference-alignment datasets and objective fact-based datasets.
arXiv Detail & Related papers (2025-04-14T07:14:27Z) - An Empirical Analysis of Uncertainty in Large Language Model Evaluations [28.297464655099034]
We conduct experiments involving 9 widely used LLM evaluators across 2 different evaluation settings.<n>We pinpoint that LLM evaluators exhibit varying uncertainty based on model families and sizes.<n>We find that employing special prompting strategies, whether during inference or post-training, can alleviate evaluation uncertainty to some extent.
arXiv Detail & Related papers (2025-02-15T07:45:20Z) - A Probabilistic Perspective on Unlearning and Alignment for Large Language Models [48.96686419141881]
We introduce the first formal probabilistic evaluation framework for Large Language Models (LLMs)<n> Namely, we propose novel metrics with high probability guarantees concerning the output distribution of a model.<n>Our metrics are application-independent and allow practitioners to make more reliable estimates about model capabilities before deployment.
arXiv Detail & Related papers (2024-10-04T15:44:23Z) - Identifying and Mitigating Social Bias Knowledge in Language Models [52.52955281662332]
We propose a novel debiasing approach, Fairness Stamp (FAST), which enables fine-grained calibration of individual social biases.<n>FAST surpasses state-of-the-art baselines with superior debiasing performance.<n>This highlights the potential of fine-grained debiasing strategies to achieve fairness in large language models.
arXiv Detail & Related papers (2024-08-07T17:14:58Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
We propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios.
We implement UAL in a simple fashion -- adaptively setting the label smoothing value of training according to the uncertainty of individual samples.
Experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning.
arXiv Detail & Related papers (2024-06-07T11:37:45Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Marginal Debiased Network for Fair Visual Recognition [59.05212866862219]
We propose a novel marginal debiased network (MDN) to learn debiased representations.
Our MDN can achieve a remarkable performance on under-represented samples.
arXiv Detail & Related papers (2024-01-04T08:57:09Z) - Simultaneous Improvement of ML Model Fairness and Performance by
Identifying Bias in Data [1.76179873429447]
We propose a data preprocessing technique that can detect instances ascribing a specific kind of bias that should be removed from the dataset before training.
In particular, we claim that in the problem settings where instances exist with similar feature but different labels caused by variation in protected attributes, an inherent bias gets induced in the dataset.
arXiv Detail & Related papers (2022-10-24T13:04:07Z) - Fairness Reprogramming [42.65700878967251]
We propose a new generic fairness learning paradigm, called FairReprogram, which incorporates the model reprogramming technique.
Specifically, FairReprogram considers the case where models can not be changed and appends to the input a set of perturbations, called the fairness trigger.
We show both theoretically and empirically that the fairness trigger can effectively obscure demographic biases in the output prediction of fixed ML models.
arXiv Detail & Related papers (2022-09-21T09:37:00Z) - Fairness by Explicability and Adversarial SHAP Learning [0.0]
We propose a new definition of fairness that emphasises the role of an external auditor and model explicability.
We develop a framework for mitigating model bias using regularizations constructed from the SHAP values of an adversarial surrogate model.
We demonstrate our approaches using gradient and adaptive boosting on: a synthetic dataset, the UCI Adult (Census) dataset and a real-world credit scoring dataset.
arXiv Detail & Related papers (2020-03-11T14:36:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.