Searching Clinical Data Using Generative AI
- URL: http://arxiv.org/abs/2505.24090v1
- Date: Fri, 30 May 2025 00:33:51 GMT
- Title: Searching Clinical Data Using Generative AI
- Authors: Karan Hanswadkar, Anika Kanchi, Shivani Tripathi, Shi Qiao, Rony Chatterjee, Alekh Jindal,
- Abstract summary: We present a generative AI approach, coined SearchAI, to enhance the accuracy and efficiency of searching clinical data.<n>Healthcare professionals typically search for groups of related diseases, drugs, or conditions that map to many codes.<n>SearchAI navigates these hierarchies predictively and ensures that all paths are reachable without losing any relevant nodes.
- Score: 1.837618924882556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial Intelligence (AI) is making a major impact on healthcare, particularly through its application in natural language processing (NLP) and predictive analytics. The healthcare sector has increasingly adopted AI for tasks such as clinical data analysis and medical code assignment. However, searching for clinical information in large and often unorganized datasets remains a manual and error-prone process. Assisting this process with automations can help physicians improve their operational productivity significantly. In this paper, we present a generative AI approach, coined SearchAI, to enhance the accuracy and efficiency of searching clinical data. Unlike traditional code assignment, which is a one-to-one problem, clinical data search is a one-to-many problem, i.e., a given search query can map to a family of codes. Healthcare professionals typically search for groups of related diseases, drugs, or conditions that map to many codes, and therefore, they need search tools that can handle keyword synonyms, semantic variants, and broad open-ended queries. SearchAI employs a hierarchical model that respects the coding hierarchy and improves the traversal of relationships from parent to child nodes. SearchAI navigates these hierarchies predictively and ensures that all paths are reachable without losing any relevant nodes. To evaluate the effectiveness of SearchAI, we conducted a series of experiments using both public and production datasets. Our results show that SearchAI outperforms default hierarchical traversals across several metrics, including accuracy, robustness, performance, and scalability. SearchAI can help make clinical data more accessible, leading to streamlined workflows, reduced administrative burden, and enhanced coding and diagnostic accuracy.
Related papers
- Aligning AI Research with the Needs of Clinical Coding Workflows: Eight Recommendations Based on US Data Analysis and Critical Review [14.381199039813675]
This position paper aims to align AI coding research more closely with practical challenges of clinical coding.<n>Based on our analysis, we offer eight specific recommendations, suggesting ways to improve current evaluation methods.
arXiv Detail & Related papers (2024-12-23T23:39:05Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
This paper presents meticulously curated AIready datasets covering multi-modal data (e.g., drug molecule, disease code, text, categorical/numerical features) and 8 crucial prediction challenges in clinical trial design.
We provide basic validation methods for each task to ensure the datasets' usability and reliability.
We anticipate that the availability of such open-access datasets will catalyze the development of advanced AI approaches for clinical trial design.
arXiv Detail & Related papers (2024-06-30T09:13:10Z) - Applying Bayesian Ridge Regression AI Modeling in Virus Severity
Prediction [0.0]
We review the strengths and weaknesses of Bayesian Ridge Regression, an AI model that can be used to bring cutting edge virus analysis to healthcare professionals.
The model's accuracy assessment revealed promising results, with room for improvement.
In addition, the severity index serves as a valuable tool to gain a broad overview of patient care needs.
arXiv Detail & Related papers (2023-10-14T04:17:00Z) - A Knowledge Graph-Based Search Engine for Robustly Finding Doctors and
Locations in the Healthcare Domain [3.268887739788112]
Knowledge graphs (KGs) have emerged as a powerful way to combine the benefits of gleaning insights from semi-structured data.
We present a KG-based search engine architecture for robustly finding doctors and locations in the healthcare domain.
arXiv Detail & Related papers (2023-10-08T18:28:17Z) - PyTrial: Machine Learning Software and Benchmark for Clinical Trial
Applications [49.69824178329405]
PyTrial provides benchmarks and open-source implementations of a series of machine learning algorithms for clinical trial design and operations.
We thoroughly investigate 34 ML algorithms for clinical trials across 6 different tasks, including patient outcome prediction, trial site selection, trial outcome prediction, patient-trial matching, trial similarity search, and synthetic data generation.
PyTrial defines each task through a simple four-step process: data loading, model specification, model training, and model evaluation, all achievable with just a few lines of code.
arXiv Detail & Related papers (2023-06-06T21:19:03Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z) - DrugOOD: Out-of-Distribution (OOD) Dataset Curator and Benchmark for
AI-aided Drug Discovery -- A Focus on Affinity Prediction Problems with Noise
Annotations [90.27736364704108]
We present DrugOOD, a systematic OOD dataset curator and benchmark for AI-aided drug discovery.
DrugOOD comes with an open-source Python package that fully automates benchmarking processes.
We focus on one of the most crucial problems in AIDD: drug target binding affinity prediction.
arXiv Detail & Related papers (2022-01-24T12:32:48Z) - Benchmark datasets driving artificial intelligence development fail to
capture the needs of medical professionals [4.799783526620609]
We released a catalogue of datasets and benchmarks pertaining to the broad domain of clinical and biomedical natural language processing (NLP)
A total of 450 NLP datasets were manually systematized and annotated with rich metadata.
Our analysis indicates that AI benchmarks of direct clinical relevance are scarce and fail to cover most work activities that clinicians want to see addressed.
arXiv Detail & Related papers (2022-01-18T15:05:28Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
International Classification of Diseases (ICD) are the de facto codes used globally for clinical coding.
These codes enable healthcare providers to claim reimbursement and facilitate efficient storage and retrieval of diagnostic information.
Our proposed approach enhances the performance of neural models by effectively training word vectors using routine medical data as well as external knowledge from scientific articles.
arXiv Detail & Related papers (2021-02-26T17:49:58Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - A Modern Non-SQL Approach to Radiology-Centric Search Engine Design with
Clinical Validation [0.0]
We present a de novo process of developing a document-based, secure, efficient, and accurate search engine in the context of Radiology.
By leveraging efficient database architecture, search capability, and clinical thinking, radiologists are at the forefront of harnessing the power of healthcare data.
arXiv Detail & Related papers (2020-07-04T15:21:49Z) - Automatic Gesture Recognition in Robot-assisted Surgery with
Reinforcement Learning and Tree Search [63.07088785532908]
We propose a framework based on reinforcement learning and tree search for joint surgical gesture segmentation and classification.
Our framework consistently outperforms the existing methods on the suturing task of JIGSAWS dataset in terms of accuracy, edit score and F1 score.
arXiv Detail & Related papers (2020-02-20T13:12:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.