LKD-KGC: Domain-Specific KG Construction via LLM-driven Knowledge Dependency Parsing
- URL: http://arxiv.org/abs/2505.24163v1
- Date: Fri, 30 May 2025 03:10:23 GMT
- Title: LKD-KGC: Domain-Specific KG Construction via LLM-driven Knowledge Dependency Parsing
- Authors: Jiaqi Sun, Shiyou Qian, Zhangchi Han, Wei Li, Zelin Qian, Dingyu Yang, Jian Cao, Guangtao Xue,
- Abstract summary: Knowledge Graphs (KGs) structure real-world entities and their relationships into triples, enhancing machine reasoning for various tasks.<n>Recent approaches for knowledge graph construction based on large language models (LLMs) have proven efficient.<n>We propose LKD-KGC, a novel framework for unsupervised domain-specific KG construction.
- Score: 9.502380540548497
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge Graphs (KGs) structure real-world entities and their relationships into triples, enhancing machine reasoning for various tasks. While domain-specific KGs offer substantial benefits, their manual construction is often inefficient and requires specialized knowledge. Recent approaches for knowledge graph construction (KGC) based on large language models (LLMs), such as schema-guided KGC and reference knowledge integration, have proven efficient. However, these methods are constrained by their reliance on manually defined schema, single-document processing, and public-domain references, making them less effective for domain-specific corpora that exhibit complex knowledge dependencies and specificity, as well as limited reference knowledge. To address these challenges, we propose LKD-KGC, a novel framework for unsupervised domain-specific KG construction. LKD-KGC autonomously analyzes document repositories to infer knowledge dependencies, determines optimal processing sequences via LLM driven prioritization, and autoregressively generates entity schema by integrating hierarchical inter-document contexts. This schema guides the unsupervised extraction of entities and relationships, eliminating reliance on predefined structures or external knowledge. Extensive experiments show that compared with state-of-the-art baselines, LKD-KGC generally achieves improvements of 10% to 20% in both precision and recall rate, demonstrating its potential in constructing high-quality domain-specific KGs.
Related papers
- Enhancing Large Language Models (LLMs) for Telecommunications using Knowledge Graphs and Retrieval-Augmented Generation [52.8352968531863]
Large language models (LLMs) have made significant progress in general-purpose natural language processing tasks.<n>This paper presents a novel framework that combines knowledge graph (KG) and retrieval-augmented generation (RAG) techniques to enhance LLM performance in the telecom domain.
arXiv Detail & Related papers (2025-03-31T15:58:08Z) - Grounding LLM Reasoning with Knowledge Graphs [4.279373869671241]
We propose integrating reasoning strategies with Knowledge Graphs to anchor every step or "thought" of the reasoning chains in KG data.<n>We evaluate both agentic and automated search methods across several reasoning strategies, including Chain-of-Thought (CoT), Tree-of-Thought (ToT), and Graph-of-Thought (GoT)<n>Our experiments demonstrate that this approach consistently outperforms baseline models.
arXiv Detail & Related papers (2025-02-18T19:20:46Z) - Ontology-grounded Automatic Knowledge Graph Construction by LLM under Wikidata schema [60.42231674887294]
We propose an ontology-grounded approach to Knowledge Graph (KG) construction using Large Language Models (LLMs) on a knowledge base.<n>We ground generation of KG with the authored ontology based on extracted relations to ensure consistency and interpretability.<n>Our work presents a promising direction for scalable KG construction pipeline with minimal human intervention, that yields high quality and human-interpretable KGs.
arXiv Detail & Related papers (2024-12-30T13:36:05Z) - SAC-KG: Exploiting Large Language Models as Skilled Automatic Constructors for Domain Knowledge Graphs [32.93944146681218]
We propose a general KG construction framework, named SAC-KG, to exploit large language models (LLMs) as Skilled Automatic Constructors for domain Knowledge Graph.
SAC-KG effectively involves LLMs as domain experts to generate specialized and precise multi-level KGs.
Experiments demonstrate that SAC-KG automatically constructs a domain KG at the scale of over one million nodes and achieves a precision of 89.32%.
arXiv Detail & Related papers (2024-09-22T13:55:23Z) - KG-FIT: Knowledge Graph Fine-Tuning Upon Open-World Knowledge [63.19837262782962]
Knowledge Graph Embedding (KGE) techniques are crucial in learning compact representations of entities and relations within a knowledge graph.
This study introduces KG-FIT, which builds a semantically coherent hierarchical structure of entity clusters.
Experiments on the benchmark datasets FB15K-237, YAGO3-10, and PrimeKG demonstrate the superiority of KG-FIT over state-of-the-art pre-trained language model-based methods.
arXiv Detail & Related papers (2024-05-26T03:04:26Z) - Leveraging Large Language Models for Semantic Query Processing in a Scholarly Knowledge Graph [1.7418328181959968]
The proposed research aims to develop an innovative semantic query processing system.
It enables users to obtain comprehensive information about research works produced by Computer Science (CS) researchers at the Australian National University.
arXiv Detail & Related papers (2024-05-24T09:19:45Z) - Multi-perspective Improvement of Knowledge Graph Completion with Large
Language Models [95.31941227776711]
We propose MPIKGC to compensate for the deficiency of contextualized knowledge and improve KGC by querying large language models (LLMs)
We conducted extensive evaluation of our framework based on four description-based KGC models and four datasets, for both link prediction and triplet classification tasks.
arXiv Detail & Related papers (2024-03-04T12:16:15Z) - A Survey on Knowledge Distillation of Large Language Models [99.11900233108487]
Knowledge Distillation (KD) emerges as a pivotal methodology for transferring advanced capabilities to open-source models.
This paper presents a comprehensive survey of KD's role within the realm of Large Language Models (LLMs)
arXiv Detail & Related papers (2024-02-20T16:17:37Z) - KG-GPT: A General Framework for Reasoning on Knowledge Graphs Using
Large Language Models [18.20425100517317]
We propose KG-GPT, a framework leveraging large language models for tasks employing knowledge graphs.
KG-GPT comprises three steps: Sentence, Graph Retrieval, and Inference, each aimed at partitioning sentences, retrieving relevant graph components, and deriving logical conclusions.
We evaluate KG-GPT using KG-based fact verification and KGQA benchmarks, with the model showing competitive and robust performance, even outperforming several fully-supervised models.
arXiv Detail & Related papers (2023-10-17T12:51:35Z) - BertNet: Harvesting Knowledge Graphs with Arbitrary Relations from
Pretrained Language Models [65.51390418485207]
We propose a new approach of harvesting massive KGs of arbitrary relations from pretrained LMs.
With minimal input of a relation definition, the approach efficiently searches in the vast entity pair space to extract diverse accurate knowledge.
We deploy the approach to harvest KGs of over 400 new relations from different LMs.
arXiv Detail & Related papers (2022-06-28T19:46:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.