SALE : Low-bit Estimation for Efficient Sparse Attention in Long-context LLM Prefilling
- URL: http://arxiv.org/abs/2505.24179v1
- Date: Fri, 30 May 2025 03:40:24 GMT
- Title: SALE : Low-bit Estimation for Efficient Sparse Attention in Long-context LLM Prefilling
- Authors: Xiaodong Ji, Hailin Zhang, Fangcheng Fu, Bin Cui,
- Abstract summary: Existing sparse attention methods accelerate attention computation by skipping less significant regions of the attention map.<n>We propose SALE, a fine-grained attention method that accelerates the long-context prefilling stage of LLM with negligible loss in model accuracy.<n> SALE achieves at least 3.36x speedups on Llama-3.1-8B for sequences longer than 64K while maintaining model quality.
- Score: 24.241825495462397
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many advanced Large Language Model (LLM) applications require long-context processing, but the self-attention module becomes a bottleneck during the prefilling stage of inference due to its quadratic time complexity with respect to sequence length. Existing sparse attention methods accelerate attention computation by skipping less significant regions of the attention map. However, these approaches typically perform coarse-grained inspection of the attention map, rendering considerable loss in model accuracy. In this paper, we propose SALE, a fine-grained sparse attention method that accelerates the long-context prefilling stage of LLM with negligible loss in model accuracy. SALE achieves fast and accurate fine-grained attention weight estimation through 4-bit quantized query-key products, followed by block-sparse attention to accelerate prefilling computations. For importance evaluation for query-key pairs, we adopt our Relative Attention Score metric, which offers significantly higher efficiency within our framework. We implement a custom CUDA kernel optimized for our approach for hardware efficiency, reducing the additional overhead to approximately 11% of the full attention latency. Notably, SALE requires no parameter training and can be seamlessly integrated into existing systems with trivial code modifications. Experiments on long-context benchmarks demonstrate that our method outperforms existing approaches in accuracy-efficiency trade-offs, achieving at least 3.36x speedups on Llama-3.1-8B for sequences longer than 64K while maintaining model quality.
Related papers
- Multipole Attention for Efficient Long Context Reasoning [64.94673641704289]
Large Reasoning Models (LRMs) have shown promising accuracy improvements on complex problem-solving tasks.<n>LRMs need to generate long chain-of-thought reasoning in order to think before answering.<n>We introduce Multipole Attention, which accelerates autoregressive reasoning by only computing exact attention for the most important tokens.
arXiv Detail & Related papers (2025-06-16T03:00:40Z) - Delta Attention: Fast and Accurate Sparse Attention Inference by Delta Correction [52.14200610448542]
A transformer has a quadratic complexity, leading to high inference costs and latency for long sequences.<n>We propose a simple, novel, and effective procedure for correcting this distributional shift.<n>Our method can maintain approximately 98.5% sparsity over full quadratic attention, making our model 32 times faster than Flash Attention 2 when processing 1M token prefills.
arXiv Detail & Related papers (2025-05-16T13:48:33Z) - Pushing the Limits of Low-Bit Optimizers: A Focus on EMA Dynamics [65.37942405146232]
We present a novel type of overload that carries with extremely lightweight state elements, achieved through ultra-low-precision quantization.<n>The proposed SOLO achieves substantial memory savings (approximately 45 GB when training a 7B model) with minimal accuracy loss.
arXiv Detail & Related papers (2025-05-01T06:47:45Z) - PowerAttention: Exponentially Scaling of Receptive Fields for Effective Sparse Attention [73.26995918610669]
Large Language Models (LLMs) face efficiency bottlenecks due to the quadratic complexity of the attention mechanism when processing long contexts.<n>We introduce PowerAttention, a novel sparse attention design that facilitates effective and complete context extension.<n>Experiments demonstrate that PowerAttention outperforms existing static sparse attention methods by $5sim 40%$.
arXiv Detail & Related papers (2025-03-05T15:24:11Z) - AttentionPredictor: Temporal Pattern Matters for Efficient LLM Inference [51.1972443343829]
We propose AttentionPredictor, which is the first learning-based critical token identification approach.<n> AttentionPredictor accurately predicts the attention score while consuming negligible memory.<n>We also propose a cross-token critical cache prefetching framework that hides the token time overhead to accelerate the decoding stage.
arXiv Detail & Related papers (2025-02-06T13:41:46Z) - SparseAccelerate: Efficient Long-Context Inference for Mid-Range GPUs [0.0]
We introduce SparseAccelerate, a dynamic sparse attention method that adapts its sparsity patterns based on input characteristics.<n> Experimental results show that SparseAccelerate achieves up to a 1.04x reduction in Time-To-First-Token (TTTF) latency at 32K tokens.
arXiv Detail & Related papers (2024-12-09T04:27:03Z) - Squeezed Attention: Accelerating Long Context Length LLM Inference [64.11145320159126]
We propose Squeezed Attention as a mechanism to accelerate LLM applications where a large portion of the input prompt is fixed.
We use K-means clustering offline to group the keys for the fixed context based on semantic similarity and represent each cluster with a single centroid value.
We then compute exact attention using only these important keys from the fixed context, thereby reducing bandwidth and computational costs.
arXiv Detail & Related papers (2024-11-14T18:54:19Z) - RetrievalAttention: Accelerating Long-Context LLM Inference via Vector Retrieval [24.472784635757016]
RetrievalAttention is a training-free approach to both accelerate attention computation and reduce GPU memory consumption.<n>We show that RetrievalAttention achieves near full attention accuracy while only requiring access to 1--3% of the data.
arXiv Detail & Related papers (2024-09-16T17:59:52Z) - MInference 1.0: Accelerating Pre-filling for Long-Context LLMs via Dynamic Sparse Attention [36.49445805074941]
MInference (Milliontokens Inference) is a sparse calculation method designed to accelerate pre-filling of long-sequence processing.
We demonstrate that MInference effectively reduces inference latency by up to 10x for pre-filling on an A100, while maintaining accuracy.
arXiv Detail & Related papers (2024-07-02T17:59:56Z) - Sparser is Faster and Less is More: Efficient Sparse Attention for Long-Range Transformers [58.5711048151424]
We introduce SPARSEK Attention, a novel sparse attention mechanism designed to overcome computational and memory obstacles.
Our approach integrates a scoring network and a differentiable top-k mask operator, SPARSEK, to select a constant number of KV pairs for each query.
Experimental results reveal that SPARSEK Attention outperforms previous sparse attention methods.
arXiv Detail & Related papers (2024-06-24T15:55:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.