Intuitionistic Fuzzy Sets for Large Language Model Data Annotation: A Novel Approach to Side-by-Side Preference Labeling
- URL: http://arxiv.org/abs/2505.24199v1
- Date: Fri, 30 May 2025 04:20:00 GMT
- Title: Intuitionistic Fuzzy Sets for Large Language Model Data Annotation: A Novel Approach to Side-by-Side Preference Labeling
- Authors: Yimin Du,
- Abstract summary: This paper introduces a novel framework based on intuitionistic fuzzy sets (IFS) for modeling and aggregating human preferences in large language models (LLMs)<n>Our approach captures not only the degree of preference but also the uncertainty and hesitation inherent in human judgment through membership, non-membership, and hesitation degrees.<n> Experimental validation on multiple datasets demonstrates that our IFS-based approach significantly improves annotation consistency, reduces annotator fatigue, and produces higher-quality preference data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The quality of human preference data is crucial for training and evaluating large language models (LLMs), particularly in reinforcement learning from human feedback (RLHF) and direct preference optimization (DPO) scenarios. Traditional side-by-side (SBS) annotation approaches often struggle with inherent uncertainty, annotator disagreement, and the complexity of preference judgments. This paper introduces a novel framework based on intuitionistic fuzzy sets (IFS) for modeling and aggregating human preferences in LLM data annotation tasks. Our approach captures not only the degree of preference but also the uncertainty and hesitation inherent in human judgment through membership, non-membership, and hesitation degrees. We propose an IFS-based annotation protocol that enables more nuanced preference modeling, develops aggregation methods for handling annotator disagreement, and introduces quality metrics for preference data assessment. Experimental validation on multiple datasets demonstrates that our IFS-based approach significantly improves annotation consistency, reduces annotator fatigue, and produces higher-quality preference data compared to traditional binary and Likert-scale methods. The resulting preference datasets lead to improved model performance in downstream tasks, with 12.3\% improvement in win-rate against baseline models and 15.7\% reduction in annotation time. Our framework provides a principled approach to handling uncertainty in human preference annotation and offers practical benefits for large-scale LLM training.
Related papers
- Multi-Level Aware Preference Learning: Enhancing RLHF for Complex Multi-Instruction Tasks [81.44256822500257]
RLHF has emerged as a predominant approach for aligning artificial intelligence systems with human preferences.<n> RLHF exhibits insufficient compliance capabilities when confronted with complex multi-instruction tasks.<n>We propose a novel Multi-level Aware Preference Learning (MAPL) framework, capable of enhancing multi-instruction capabilities.
arXiv Detail & Related papers (2025-05-19T08:33:11Z) - Leveraging Robust Optimization for LLM Alignment under Distribution Shifts [52.983390470606146]
Preference alignment methods are increasingly critical for steering large language models to generate outputs consistent with human values.<n>We propose a novel distribution-aware optimization framework that improves preference alignment despite such shifts.
arXiv Detail & Related papers (2025-04-08T09:14:38Z) - Sharpe Ratio-Guided Active Learning for Preference Optimization in RLHF [67.48004037550064]
We propose an active learning approach to efficiently select prompt and preference pairs.<n>Our method evaluates the gradients of all potential preference annotations to assess their impact on model updates.<n> Experimental results demonstrate that our method outperforms the baseline by up to 5% in win rates against the chosen completion.
arXiv Detail & Related papers (2025-03-28T04:22:53Z) - Optimizing LLMs with Direct Preferences: A Data Efficiency Perspective [4.548047308860141]
This study investigates the impact of different type of preference data on model performance.
It aims to reduce their dependency on extensive amounts of preference data, which is expensive to collect.
arXiv Detail & Related papers (2024-10-22T00:11:41Z) - RosePO: Aligning LLM-based Recommenders with Human Values [38.029251417802044]
We propose a general framework -- Recommendation with smoothing personalized Preference Optimization (RosePO)
RosePO better aligns with customized human values during the post-training stage.
Evaluation on three real-world datasets demonstrates the effectiveness of our method.
arXiv Detail & Related papers (2024-10-16T12:54:34Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
We propose a novel Self-supervised Preference Optimization (SPO) framework, which constructs a self-supervised preference degree loss combined with the alignment loss.
The results demonstrate that SPO can be seamlessly integrated with existing preference optimization methods to achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-09-26T12:37:26Z) - TSO: Self-Training with Scaled Preference Optimization [14.3799656174528]
We propose TSO, a framework for preference optimization that conducts self-training preference learning without training an additional reward model.
TSO enhances the diversity of responses by constructing a model matrix and incorporating human preference responses.
Experimental results demonstrate that TSO outperforms existing mainstream methods on various alignment evaluation benchmarks.
arXiv Detail & Related papers (2024-08-31T05:37:01Z) - Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
We propose an effective framework for Bridging and Modeling Correlations in pairwise data, named BMC.<n>We increase the consistency and informativeness of the pairwise preference signals through targeted modifications.<n>We identify that DPO alone is insufficient to model these correlations and capture nuanced variations.
arXiv Detail & Related papers (2024-08-14T11:29:47Z) - Spread Preference Annotation: Direct Preference Judgment for Efficient LLM Alignment [72.99676237703099]
We propose a new framework that boosts the alignment of large language models with human preferences.<n>Our key idea is leveraging the human prior knowledge within the small (seed) data.<n>We introduce a noise-aware preference learning algorithm to mitigate the risk of low quality within generated preference data.
arXiv Detail & Related papers (2024-06-06T18:01:02Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
We introduce Self-Augmented Preference Optimization (SAPO), an effective and scalable training paradigm that does not require existing paired data.
Building on the self-play concept, which autonomously generates negative responses, we further incorporate an off-policy learning pipeline to enhance data exploration and exploitation.
arXiv Detail & Related papers (2024-05-31T14:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.